
Programmer's Reference

Publication Number D8064-97001
December 2005

This reference applies directly to software revision code A.04.00 and later.

 Copyright Agilent Technologies 2005
All Rights Reserved.

8000A Series Infiniium
Oscilloscopes

ii

In This Book

This book is your guide to programming the Infiniium Series Oscilloscopes.

Chapters 1-5 give you an introduction to programming the oscilloscopes, along
with necessary conceptual information. These chapters describe basic program
communications, interface, syntax, data types, and status reporting.

Chapter 6 shows example BASIC and C programs, and describes chunks of one
program to show you some typical applications. The BASIC and C example
programs are also shipped on a disk with the oscilloscope.

Chapters 7-25 describe the commands used to program the Infiniium
Oscilloscopes. Each chapter describes the set of commands that belong to an
individual subsystem, and explains the function of each command. These
chapters include:

Error Messages chapter describes error messages.

ACQuire HISTogram
BUS MARKer

CALibration MEASure

CHANnel POD

Common Root Level

DIGital SELFtest

DISK SYSTem

DISPlay TIMe Base

EXTernal Channel TRIGger

FUNCtion WAVeform

HARDcopy Waveform MEMory

Contents

Contents-1

1 Introduction to Programming
Communicating with the Oscilloscope 1-3
Output Command 1-4
Device Address 1-4
Instructions 1-4
Instruction Header 1-4
White Space (Separator) 1-5
Braces 1-5
Ellipsis 1-5
Square Brackets 1-5
Command and Query Sources 1-5
Program Data 1-6
Header Types 1-7
Duplicate Mnemonics 1-9
Query Headers 1-10
Program Header Options 1-11
Character Program Data 1-11
Numeric Program Data 1-12
Embedded Strings 1-13
Program Message Terminator 1-13
Common Commands within a Subsystem 1-14
Selecting Multiple Subsystems 1-14
Programming Getting Started 1-14
Initialization 1-15
Example Program using HP Basic 1-16
Using the DIGITIZE Command 1-17
Receiving Information from the Oscilloscope 1-19
String Variable Example 1-20
Numeric Variable Example 1-20
Definite-Length Block Response Data 1-21
Multiple Queries 1-22
Oscilloscope Status 1-22

2 LAN and GPIB Interfaces
LAN Interface Connector 2-3
GPIB Interface Connector 2-3
Default Startup Conditions 2-4
Interface Capabilities 2-5
GPIB Command and Data Concepts 2-6
Communicating Over the GPIB Interface 2-7
Communicating Over the LAN Interface 2-8
Bus Commands 2-10

3 Message Communication and System Functions
Protocols 3-3

Contents

Contents-2

4 Status Reporting
Status Reporting Data Structures 4-5
Status Byte Register 4-8
Service Request Enable Register 4-10
Message Event Register 4-10
Trigger Event Register 4-10
Standard Event Status Register 4-11
Standard Event Status Enable Register 4-12
Operation Status Register 4-13
Operation Status Enable Register 4-14
Mask Test Event Register 4-15
Mask Test Event Enable Register 4-16
Trigger Armed Event Register 4-17
Acquisition Done Event Register 4-17
Error Queue 4-18
Output Queue 4-18
Message Queue 4-19
Clearing Registers and Queues 4-19

5 Programming Conventions
Truncation Rule 5-3
The Command Tree 5-4
Infinity Representation 5-14
Sequential and Overlapped Commands 5-14
Response Generation 5-14
EOI 5-14

6 Sample Programs
Sample Program Structure 6-3
Sample C Programs 6-4
Listings of the Sample Programs 6-18
gpibdecl.h Sample Header 6-19
srqagi.c Sample Program 6-21
learnstr.c Sample Program 6-23
sicl_IO.c Sample Program 6-27
natl_IO.c Sample Program 6-32
init.bas Sample Program 6-37
srq.bas Sample Program 6-45
lrn_str.bas Sample Program 6-51

7 Acquire Commands
AVERage 7-3
AVERage:COUNt 7-4
COMPlete 7-5
COMPlete:STATe 7-7
INTerpolate 7-8

Contents

Contents-3

MODE 7-9
POINts 7-11
POINts:AUTO 7-21
SEGMented:COUNt 7-22
SEGMented:INDex 7-23
SRATe (Sample RATe) 7-24
SRATe:AUTO 7-26

8 Bus Commands
BIT<M> 8-3
BITS 8-4
CLEar 8-5
DISPlay 8-6
LABel 8-7

9 Calibration Commands
Oscilloscope Calibration 9-3
Probe Calibration 9-4

Calibration Commands 9-5
OUTPut 9-6
SKEW 9-7
STATus? 9-8

10 Channel Commands
BWLimit 10-3
DISPlay 10-4
INPut 10-5
OFFSet 10-6
PROBe 10-7
PROBe:ATTenuation 10-9
PROBe:EADapter 10-10
PROBe:ECoupling 10-12
PROBe:EXTernal 10-14
PROBe:EXTernal:GAIN 10-15
PROBe:EXTernal:OFFSet 10-17
PROBe:EXTernal:UNITs 10-19
PROBe:GAIN 10-21
PROBe:ID? 10-22
PROBe:SKEW 10-24
PROBe:STYPe 10-25
RANGe 10-26
SCALe 10-27
UNITs 10-28

11 Common Commands

Contents

Contents-4

 *CLS (Clear Status) 11-4
*ESE (Event Status Enable) 11-5
*ESR? (Event Status Register) 11-7
*IDN? (Identification Number) 11-9
*LRN? (Learn) 11-10
*OPC (Operation Complete) 11-12
*OPT? (Option) 11-13
*PSC (Power-on Status Clear) 11-14
*RCL (Recall) 11-15
*RST (Reset) 11-16
*SAV (Save) 11-17
*SRE (Service Request Enable) 11-18
*STB? (Status Byte) 11-20
*TRG (Trigger) 11-22
*TST? (Test) 11-23
*WAI (Wait) 11-24

12 Digital Commands
DISPlay 12-3
LABel 12-4
SIZE 12-5
THReshold 12-6

13 Disk Commands
CDIRectory 13-3
DELete 13-4
DIRectory? 13-5
LOAD 13-6
MDIRectory 13-7
MSTore 13-8
PWD? 13-12
SEGMented 13-13
SIMage 13-14
STORe 13-15

14 Display Commands
CGRade 14-3
CGRade:LEVels? 14-5
COLumn 14-7
CONNect 14-8
DATA? 14-9
DCOLor 14-10
GRATicule 14-11
LABel 14-13
LINE 14-14
PERSistence 14-15

Contents

Contents-5

ROW 14-16
SCOLor 14-17
STRing 14-20
TEXT 14-21

15 External Trigger Commands
BWLimit 15-3
INPut 15-4
PROBe 15-5
PROBe:ATTenuation 15-6
PROBe:EADapter 15-7
PROBe:ECoupling 15-9
PROBe:EXTernal 15-11
PROBe:EXTernal:GAIN 15-12
PROBe:EXTernal:UNITs 15-14
PROBe:GAIN 15-16
PROBe:ID? 15-17
PROBe:SKEW 15-18
RANGe 15-19
UNITs 15-20

16 Function Commands
FUNCtion<N>? 16-4
ADD 16-5
AVERage 16-6
COMMonmode 16-7
DIFF (Differentiate) 16-8
DISPlay 16-9
DIVide 16-10
FFT:FREQuency 16-11
FFT:RESolution? 16-12
FFT:WINDow 16-13
FFTMagnitude 16-15
FFTPhase 16-16
FFTPhase 16-17
HIGHpass 16-18
HORizontal:POSition 16-19
HORizontal:RANGe 16-20
INTegrate 16-21
INVert 16-22
LOWPass 16-23
MAGNify 16-24
MAXimum 16-25
MAXimum 16-26
MINimum 16-27
MULTiply 16-28

Contents

Contents-6

OFFSet 16-29
RANGe 16-30
SMOoth 16-31
SUBTract 16-32
VERSus 16-33
VERTical 16-34
VERTical:OFFSet 16-35
VERTical:RANGe 16-36

17 Hardcopy Commands
AREA 17-3
DPRinter 17-4
FACTors 17-6
IMAGe 17-7
PRINters? 17-8

18 Histogram Commands
AXIS 18-4
MODE 18-5
SCALe:SIZE 18-6
WINDow:DEFault 18-7
WINDow:SOURce 18-8
WINDow:X1Position | LLIMit 18-9
WINDow:X2Position | RLIMit 18-10
WINDow:Y1Position | BLIMit 18-11
WINDow:Y2Position | TLIMit 18-12

19 Marker Commands
CURSor? 19-3
MEASurement:READout 19-4
MODE 19-5
TDELta? 19-6
TSTArt 19-7
TSTOp 19-9
VDELta? 19-11
VSTArt 19-12
VSTOp 19-14
X1Position 19-16
X2Position 19-17
X1Y1source 19-18
X2Y2source 19-19
XDELta? 19-20
Y1Position 19-21
Y2Position 19-22
YDELta? 19-23

Contents

Contents-7

20 Mask Test Commands
ALIGn 20-4
AlignFIT 20-5
AMASk:CREate 20-7
AMASk:SOURce 20-8
AMASk:[SAVE | STORe] 20-9
AMASk:UNITs 20-10
AMASk:XDELta 20-11
AMASk:YDELta 20-13
AUTO 20-15
AVERage 20-16
AVERage:COUNt 20-17
COUNt:FAILures? 20-18
COUNt:FWAVeforms? 20-19
COUNt:WAVeforms? 20-20
DELete 20-21
ENABle 20-22
FOLDing 20-23
FOLDing:BITS 20-24
HAMPlitude 20-25
IMPedance 20-26
INVert 20-28
LAMPlitude 20-29
LOAD 20-30
NREGions? 20-31
PROBe:IMPedance? 20-32
RUMode 20-33
RUMode:SOFailure 20-35
SCALe:BIND 20-36
SCALe:X1 20-37
SCALe:XDELta 20-38
SCALe:Y1 20-40
SCALe:Y2 20-41
SOURce 20-42
STARt | STOP 20-43
STIMe 20-44
TITLe? 20-45
TRIGger:SOURce 20-46

21 Measure Commands
AREA 21-7
CGRade:CROSsing 21-8
CGRade:DCDistortion 21-9
CGRade:EHEight 21-10
CGRade:EWIDth 21-11

Contents

Contents-8

CGRade:JITTer 21-12
CGRade:QFACtor 21-13
CLEar 21-14
CLOCk 21-15
CLOCk:METHod 21-16
CLOCk::VERTical 21-18
CLOCk::VERTical:OFFSet 21-19
CLOCk:VERTical:RANGe 21-20
CTCDutycycle 21-21
CTCJitter 21-23
CTCNwidth 21-25
CTCPwidth 21-26
DATarate 21-27
DEFine 21-28
DELTatime 21-33
DUTYcycle 21-35
FALLtime 21-37
FFT:DFRequency 21-39
FFT:DMAGnitude 21-40
FFT:FREQuency 21-41
FFT:MAGNitude 21-42
FFT:PEAK1 21-43
FFT:PEAK2 21-44
FFT:THReshold 21-45
FREQuency 21-46
HISTogram:HITS 21-48
HISTogram:M1S 21-50
HISTogram:M2S 21-52
HISTogram:M3S 21-54
HISTogram:MAX? 21-56
HISTogram:MEAN? 21-57
HISTogram:MEDian? 21-58
HISTogram:MIN? 21-59
HISTogram:PEAK? 21-60
HISTogram:PP? 21-61
HISTogram:STDDev? 21-62
HOLDtime 21-63
JITTer:HISTogram 21-65
JITTer:MEASurement 21-66
JITTer:SPECtrum 21-67
JITTer:SPECtrum:HORizontal 21-68
JITTer:SPECtrum:HORizontal:POSition 21-69
JITTer:SPECtrum:HORizontal:RANGe 21-70
JITTer:SPECtrum:VERTical 21-71
JITTer:SPECtrum:VERTical:OFFSet 21-72

Contents

Contents-9

JITTer:SPECtrum:VERTical:RANGe 21-73
JITTer:SPECtrum:WINDow 21-74
JITTer:STATistics 21-75
JITTer:TRENd 21-76
JITTer:TRENd:SMOoth 21-77
JITTer:TREND:SMOoth:POINts 21-78
JITTer:TRENd:VERTical 21-79
JITTer:TRENd:VERTical:OFFSet 21-80
JITTer:TRENd:VERTical:RANGe 21-81
NCJitter 21-82
NWIDth 21-84
OVERshoot 21-86
PERiod 21-88
PHASe 21-90
PREShoot 21-92
PWIDth 21-94
RESults? 21-96
RISetime 21-99
SCRatch 21-101
SENDvalid 21-102
SETuptime 21-103
SLEWrate 21-105
SOURce 21-106
STATistics 21-107
TEDGe 21-108
TIEClock2 21-110
TIEData 21-112
TMAX 21-114
TMIN 21-115
TVOLt 21-116
UNITinterval 21-118
VAMPlitude 21-119
VAVerage 21-120
VBASe 21-122
VLOWer 21-123
VMAX 21-124
VMIDdle 21-125
VMIN 21-126
VPP 21-127
VRMS 21-128
VTIMe 21-130
VTOP 21-131
VUPPer 21-132

Contents

Contents-10

22 Pod Commands
DISPlay 22-3
THReshold 22-4
PSKew 22-5

23 Root Level Commands
ADER? (Acquisition Done Event Register) 23-4
AER? (Arm Event Register) 23-5
ATER? (Auto Trigger Event Register) 23-6
AUToscale 23-7
BLANk 23-8
CDISplay 23-9
DIGitize 23-10
DISable 23-12
ENABle 23-13
MTEE 23-14
MTER? 23-15
MODel? 23-16
OPEE 23-17
OPER? 23-18
OVLEnable 23-19
OVLRegister? 23-20
PRINt 23-21
RECall:SETup 23-22
RUN 23-23
SERial (Serial Number) 23-24
SINGle 23-25
STATus? 23-26
STOP 23-27
STORe:SETup 23-28
STORe:WAVeform 23-29
TER? (Trigger Event Register) 23-30
VIEW 23-31

24 Self-Test Commands
CANCel 24-3
SCOPETEST 24-4

25 System Commands
DATE 25-3
DEBug 25-4
DSP 25-6
ERRor? 25-7
HEADer 25-8
LOCK 25-10
LONGform 25-11

Contents

Contents-11

SETup 25-13
TIME 25-15

26 Time Base Commands
POSition 26-3
RANGe 26-4
REFerence 26-5
ROLL:ENABLE 26-6
SCALe 26-7
VIEW 26-8
WINDow:DELay 26-9
WINDow:POSition 26-11
WINDow:RANGe 26-12
WINDow:SCALe 26-13

27 Trigger Commands

Organization of Trigger Modes and Commands 27-5

Summary of Trigger Modes and Commands 27-6
Trigger Modes 27-8
HOLDoff 27-9
HTHReshold 27-10
HYSTeresis 27-11
LEVel 27-12
LTHReshold 27-13
SWEep 27-14

Edge Trigger Mode and Commands 27-15
EDGE:COUPling 27-17
EDGE:SLOPe 27-18
EDGE:SOURce 27-19

Glitch Trigger Mode and Commands 27-20
GLITch:POLarity 27-22
GLITch:SOURce 27-23
GLITch:WIDTh 27-24

Advanced COMM Trigger Mode and Commands 27-25
COMM:BWIDth 27-26
COMM:ENCode 27-27
COMM:LEVel 27-28
COMM:PATTern 27-29
COMM:POLarity 27-30
COMM:SOURce 27-31

Contents

Contents-12

Advanced Pattern Trigger Mode and Commands 27-32
PATTern:CONDition 27-34
PATTern:LOGic 27-35
:PATTern:THReshold:LEVel 27-36
:PATTern:THReshold:POD<N> 27-37

Advanced State Trigger Mode and Commands 27-38
STATe:CLOCk 27-40
STATe:LOGic 27-41
STATe:LTYPe 27-42
STATe:SLOPe 27-43
:STATe:THReshold:LEVel 27-44

Advanced Delay By Event Mode and Commands 27-45
EDLY:ARM:SOURce 27-47
EDLY:ARM:SLOPe 27-48
EDLY:EVENt:DELay 27-49
EDLY:EVENt:SOURce 27-50
EDLY:EVENt:SLOPe 27-51
EDLY:TRIGger:SOURce 27-52
EDLY:TRIGger:SLOPe 27-53

Advanced Delay By Time Mode and Commands 27-54
TDLY:ARM:SOURce 27-56
TDLY:ARM:SLOPe 27-57
TDLY:DELay 27-58
TDLY:TRIGger:SOURce 27-59
TDLY:TRIGger:SLOPe 27-60

Advanced Standard TV Mode and Commands 27-61
STV:FIELd 27-63
STV:LINE 27-64
STV:SOURce 27-65
STV:SPOLarity 27-66

Advanced User Defined TV Mode and Commands 27-67
UDTV:ENUMber 27-69
UDTV:PGTHan 27-70
UDTV:POLarity 27-71
UDTV:SOURce 27-72

Advanced Trigger Violation Modes 27-73
VIOLation:MODE 27-74

Contents

Contents-13

Pulse Width Violation Mode and Commands 27-75
VIOLation:PWIDth:DIRection 27-77
VIOLation:PWIDth:POLarity 27-78
VIOLation:PWIDth:SOURce 27-79
VIOLation:PWIDth:WIDTh 27-80

Setup Violation Mode and Commands 27-81
VIOLation:SETup:MODE 27-84
VIOLation:SETup:SETup:CSOurce 27-85
VIOLation:SETup:SETup:CSOurce:LEVel 27-86
VIOLation:SETup:SETup:CSOurce:EDGE 27-87
VIOLation:SETup:SETup:DSOurce 27-88
VIOLation:SETup:SETup:DSOurce:HTHReshold 27-89
VIOLation:SETup:SETup:DSOurce:LTHReshold 27-90
VIOLation:SETup:SETup:TIME 27-91
VIOLation:SETup:HOLD:CSOurce 27-92
VIOLation:SETup:HOLD:CSOurce:LEVel 27-93
VIOLation:SETup:HOLD:CSOurce:EDGE 27-94
VIOLation:SETup:HOLD:DSOurce 27-95
VIOLation:SETup:HOLD:DSOurce:HTHReshold 27-96
VIOLation:SETup:HOLD:DSOurce:LTHReshold 27-97
VIOLation:SETup:HOLD:TIME 27-98
VIOLation:SETup:SHOLd:CSOurce 27-99
VIOLation:SETup:SHOLd:CSOurce:LEVel 27-100
VIOLation:SETup:SHOLd:CSOurce:EDGE 27-101
VIOLation:SETup:SHOLd:DSOurce 27-102
VIOLation:SETup:SHOLd:DSOurce:HTHReshold 27-103
VIOLation:SETup:SHOLd:DSOurce:LTHReshold 27-104
VIOLation:SETup:SHOLd:SetupTIMe (STIMe) 27-105
VIOLation:SETup:SHOLd:HoldTIMe (HTIMe) 27-106

Transition Violation Mode 27-107
VIOLation:TRANsition 27-109
VIOLation:TRANsition:SOURce 27-110
VIOLation:TRANsition:SOURce:HTHReshold 27-111
VIOLation:TRANsition:SOURce:LTHReshold 27-112
VIOLation:TRANsition:TYPE 27-113

28 Waveform Commands
BANDpass? 28-5
BYTeorder 28-6
COMPlete? 28-7
COUNt? 28-8
COUPling? 28-9
DATA? 28-10

Contents

Contents-14

DATA? Example for Analog Channels 28-12
DATA? Example for Digital Channels 28-26
FORMat 28-41
POINts? 28-44
PREamble 28-45
SEGMented:COUNt? 28-51
SEGMented:TTAG? 28-52
SOURce 28-53
TYPE? 28-55
VIEW 28-57
XDISplay? 28-59
XINCrement? 28-60
XORigin? 28-61
XRANge? 28-62
XREFerence? 28-63
XUNits? 28-64
YDISplay? 28-65
YINCrement? 28-66
YORigin? 28-67
YRANge? 28-68
YREFerence? 28-69
YUNits? 28-70

29 Waveform Memory Commands
DISPlay 29-3
LOAD 29-4
SAVE 29-5
XOFFset 29-6
XRANge 29-7
YOFFset 29-8
YRANge 29-9

30 Error Messages
Error Queue 30-3
Error Numbers 30-4
Command Error 30-5
Execution Error 30-6
Device- or Oscilloscope-Specific Error 30-7
Query Error 30-8
List of Error Messages 30-9

1

Introduction to Programming

Introduction to Programming

This chapter introduces the basics for remote programming of an
oscilloscope. The programming commands in this manual conform to
the IEEE 488.2 Standard Digital Interface for Programmable
Instrumentation. The programming commands provide the means of
remote control.

Basic operations that you can do with a computer and an oscilloscope
include:

• Set up the oscilloscope.
• Make measurements.
• Get data (waveform, measurements, and configuration) from the

oscilloscope.
• Send information, such as waveforms and configurations, to the

oscilloscope.
You can accomplish other tasks by combining these functions.

Example Programs are Written in HP BASIC and C

The programming examples for individual commands in this manual are written in
HP BASIC and C.
1- 2

Introduction to Programming
Communicating with the Oscilloscope
Communicating with the Oscilloscope

Computers communicate with the oscilloscope by sending and receiving
messages over a remote interface, such as a GPIB card or a Local Area Network
(LAN) card. Commands for programming normally appear as ASCII character
strings embedded inside the output statements of a “host” language available
on your computer. The input commands of the host language are used to read
responses from the oscilloscope.

For example, HP BASIC uses the OUTPUT statement for sending commands
and queries. After a query is sent, the response is usually read using the
HP BASIC ENTER statement. The ENTER statement passes the value across
the bus to the computer and places it in the designated variable.

For the GPIB interface, messages are placed on the bus using an output
command and passing the device address, program message, and a terminator.
Passing the device address ensures that the program message is sent to the
correct GPIB interface and GPIB device.

The following HP BASIC OUTPUT statement sends a command that sets the
channel 1 scale value to 500 mV:

OUTPUT <device address> ;":CHANNEL1:SCALE 500E-
3"<terminator>

The device address represents the address of the device being programmed.
Each of the other parts of the above statement are explained on the following
pages.

Use the Suffix Multiplier Instead

Using "mV" or "V" following the numeric voltage value in some commands will cause
Error 138 - Suffix not allowed. Instead, use the convention for the suffix multiplier as
described in chapter 3, "Message Communication and System Functions."
1- 3

Introduction to Programming
Output Command
Output Command

The output command depends entirely on the programming language.
Throughout this book, HP BASIC and ANSI C are used in the examples of
individual commands. If you are using other languages, you will need to find
the equivalents of HP BASIC commands like OUTPUT, ENTER, and CLEAR, to
convert the examples.

Device Address

The location where the device address must be specified depends on the
programming language you are using. In some languages, it may be specified
outside the OUTPUT command. In HP BASIC, it is always specified after the
keyword, OUTPUT. The examples in this manual assume that the oscilloscope
and interface card are at GPIB device address 707. When writing programs, the
device address varies according to how the bus is configured.

Instructions

Instructions, both commands and queries, normally appear as strings embedded
in a statement of your host language, such as BASIC, Pascal, or C. The only
time a parameter is not meant to be expressed as a string is when the
instruction's syntax definition specifies <block data>, such as HP BASIC’s
"learnstring" command. There are only a few instructions that use block data.

Instructions are composed of two main parts:

• The header, which specifies the command or query to be sent.

• The program data, which provides additional information to clarify the
meaning of the instruction.

Instruction Header

The instruction header is one or more command mnemonics separated by
colons (:). They represent the operation to be performed by the oscilloscope.
See the “Programming Conventions” chapter for more information.

Queries are formed by adding a question mark (?) to the end of the header.
Many instructions can be used as either commands or queries, depending on
whether or not you include the question mark. The command and query forms
of an instruction usually have different program data. Many queries do not use
any program data.
1- 4

Introduction to Programming
White Space (Separator)
White Space (Separator)

White space is used to separate the instruction header from the program data.
If the instruction does not require any program data parameters, you do not
need to include any white space. In this manual, white space is defined as one
or more spaces. ASCII defines a space to be character 32 in decimal.

Braces

When several items are enclosed by braces, { }, only one of these elements may
be selected. Vertical line (|) indicates "or". For example, {ON | OFF} indicates
that only ON or OFF may be selected, not both.

Ellipsis

... An ellipsis (trailing dots) indicates that the preceding element may be
repeated one or more times.

Square Brackets

Items enclosed in square brackets, [], are optional.

Command and Query Sources

Many commands and queries require that a source be specified. Depending on
the command or query and the model number of Infiniium oscilloscope being
used, some of the sources are not available. The following is a list of sources:

CHANnel1 FUNCtion1 WMEMory1

CHANnel2 FUNCtion2 WMEMory2

CHANnel3 FUNCtion3 WMEMory3

CHANnel4 FUNCtion4 WMEMory4

DIGital0 DIGital1 DIGital2 DIGital3

DIGital4 DIGital5 DIGital6 DIGital7

DIGital8 DIGital9 DIGital10 DIGital11

DIGital12 DIGital13 DIGital14 DIGital15

CLOCk MTRend MSPectrum HISTogram
1- 5

Introduction to Programming
Program Data
Program Data

Program data is used to clarify the meaning of the command or query. It
provides necessary information, such as whether a function should be on or off,
or which waveform is to be displayed. Each instruction's syntax definition
shows the program data and the values they accept.

When there is more than one data parameter, they are separated by commas (,).
You can add spaces around the commas to improve readability.
1- 6

Introduction to Programming
Header Types
Header Types

There are three types of headers:

• Simple Command headers

• Compound Command headers

• Common Command headers

Simple Command Header

Simple command headers contain a single mnemonic. AUTOSCALE and
DIGITIZE are examples of simple command headers typically used in this
oscilloscope. The syntax is:
<program mnemonic><terminator>

or
OUTPUT 707;”:AUTOSCALE”

When program data must be included with the simple command header
(for example, :DIGITIZE CHAN1), white space is added to separate the data
from the header. The syntax is:
<program mnemonic><separator><program data><terminator>

or
OUTPUT 707;”:DIGITIZE CHANNEL1,FUNCTION2”

Compound Command Header

Compound command headers are a combination of two program mnemonics.
The first mnemonic selects the subsystem, and the second mnemonic selects
the function within that subsystem. The mnemonics within the compound
message are separated by colons. For example:

To execute a single function within a subsystem:
:<subsystem>:<function><separator><program data><terminator>

For example:

OUTPUT 707;”:CHANNEL1:BWLIMIT ON”
1- 7

Introduction to Programming
Header Types
Combining Commands in the Same Subsystem

To execute more than one command within the same subsystem, use a semi-
colon (;) to separate the commands:
:<subsystem>:<command><separator><data>;<command><separator>
<data><terminator>

For example:

:CHANNEL1:INPUT DC;BWLIMIT ON

Common Command Header

Common command headers, such as clear status, control the IEEE 488.2
functions within the oscilloscope. The syntax is:
*<command header><terminator>

No space or separator is allowed between the asterisk (*) and the command
header. *CLS is an example of a common command header.
1- 8

Introduction to Programming
Duplicate Mnemonics
Duplicate Mnemonics

Identical function mnemonics can be used for more than one subsystem. For
example, you can use the function mnemonic RANGE to change both the
vertical range and horizontal range:

To set the vertical range of channel 1 to 0.4 volts full scale:

:CHANNEL1:RANGE .4

To set the horizontal time base to 1 second full scale:

:TIMEBASE:RANGE 1

In these examples, CHANNEL1 and TIMEBASE are subsystem selectors, and
determine the range type being modified.
1- 9

Introduction to Programming
Query Headers
Query Headers

A command header immediately followed by a question mark (?) is a query.
After receiving a query, the oscilloscope interrogates the requested subsystem
and places the answer in its output queue. The answer remains in the output
queue until it is read or until another command is issued. When read, the answer
is transmitted across the bus to the designated listener (typically a computer).
For example, the query:
:TIMEBASE:RANGE?

places the current time base setting in the output queue.

In HP BASIC, the computer input statement:
ENTER < device address > ;Range

passes the value across the bus to the computer and places it in the variable
Range.

You can use queries to find out how the oscilloscope is currently configured and
to get results of measurements made by the oscilloscope.
For example, the command:
:MEASURE:RISETIME?

tells the oscilloscope to measure the rise time of your waveform and place the
result in the output queue.

The output queue must be read before the next program message is sent. For
example, when you send the query :MEASURE:RISETIME?, you must follow it
with an input statement. In HP BASIC, this is usually done with an ENTER
statement immediately followed by a variable name. This statement reads the
result of the query and places the result in a specified variable.

Handle Queries Properly

If you send another command or query before reading the result of a query, the output
buffer is cleared and the current response is lost. This also generates a query-
interrupted error in the error queue. If you execute an input statement before you
send a query, it will cause the computer to wait indefinitely.
1- 10

Introduction to Programming
Program Header Options
Program Header Options

You can send program headers using any combination of uppercase or lowercase
ASCII characters. Oscilloscope responses, however, are always returned in
uppercase.

You may send program command and query headers in either long form
(complete spelling), short form (abbreviated spelling), or any combination of
long form and short form. For example:

:TIMEBASE:DELAY 1E-6 is the long form.

:TIM:DEL 1E-6 is the short form.

The rules for the short form syntax are described in the chapter, “Programming
Conventions.”

Character Program Data

Character program data is used to convey parameter information as alpha or
alphanumeric strings. For example, the :TIMEBASE:REFERENCE command
can be set to left, center, or right. The character program data in this case may
be LEFT, CENTER, or RIGHT. The command :TIMEBASE:REFERENCE
RIGHT sets the time base reference to right.

The available mnemonics for character program data are always included with
the instruction's syntax definition. You may send either the long form of
commands, or the short form (if one exists). You may mix uppercase and
lowercase letters freely. When receiving responses, uppercase letters are used
exclusively.

Using Long Form or Short Form

Programs written in long form are easily read and are almost self-documenting.
The short form syntax conserves the amount of computer memory needed for
program storage and reduces I/O activity.
1- 11

Introduction to Programming
Numeric Program Data
Numeric Program Data

Some command headers require program data to be expressed numerically.
For example, :TIMEBASE:RANGE requires the desired full-scale range to be
expressed numerically.

For numeric program data, you can use exponential notation or suffix
multipliers to indicate the numeric value. The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K = 28E-3K

When a syntax definition specifies that a number is an integer, it means that the
number should be whole. Any fractional part is ignored and truncated. Numeric
data parameters that accept fractional values are called real numbers. For more
information see the chapter, “Interface Functions.”

All numbers are expected to be strings of ASCII characters.

• When sending the number 9, you would send a byte representing the
ASCII code for the character “9” (which is 57).

• A three-digit number like 102 would take up three bytes (ASCII codes 49,
48, and 50). The number of bytes is figured automatically when you
include the entire instruction in a string.
1- 12

Introduction to Programming
Embedded Strings
Embedded Strings

Embedded strings contain groups of alphanumeric characters which are treated
as a unit of data by the oscilloscope. An example of this is the line of text written
to the advisory line of the oscilloscope with the :SYSTEM:DSP command:
:SYSTEM:DSP ""This is a message.""

You may delimit embedded strings with either single (') or double (") quotation
marks. These strings are case-sensitive, and spaces are also legal characters.

Program Message Terminator

The program instructions within a data message are executed after the program
message terminator is received. The terminator may be either an NL (New
Line) character, an EOI (End-Or-Identify) asserted in the GPIB interface, or a
combination of the two. Asserting the EOI sets the EOI control line low on the
last byte of the data message. The NL character is an ASCII linefeed (decimal
10).

New Line Terminator Functions Like EOS and EOT

The NL (New Line) terminator has the same function as an EOS (End Of String) and
EOT (End Of Text) terminator.
1- 13

Introduction to Programming
Common Commands within a Subsystem
Common Commands within a Subsystem

Common commands can be received and processed by the oscilloscope whether
they are sent over the bus as separate program messages or within other
program messages. If you have selected a subsystem, and a common command
is received by the oscilloscope, the oscilloscope remains in the selected
subsystem. For example, if the program message
":ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

is received by the oscilloscope, the oscilloscope turns averaging on, then clears
the status information without leaving the selected subsystem.

If some other type of command is received within a program message, you must
re-enter the original subsystem after the command. For example, the program
message
":ACQUIRE:AVERAGE ON;:AUTOSCALE;:ACQUIRE:AVERAGE:COUNT 1024"

turns averaging on, completes the autoscale operation, then sets the acquire
average count. Here, :ACQUIRE must be sent again after AUTOSCALE to re-
enter the ACQUIRE subsystem and set the count.

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon.
The colon following the semicolon lets you enter a new subsystem. For example:
<program mnemonic><data>;:<program mnemonic><data><terminator>

:CHANNEL1:RANGE 0.4;:TIMEBASE:RANGE 1

Programming Getting Started

The remainder of this chapter explains how to set up the oscilloscope, how to
retrieve setup information and measurement results, how to digitize a
waveform, and how to pass data to the computer. The chapter, “Measure
Commands” describes sending measurement data to the oscilloscope.

You can Combine Compound and Simple Commands

Multiple program commands may be any combination of compound and simple
commands.
1- 14

Introduction to Programming
Initialization
Initialization

To make sure the bus and all appropriate interfaces are in a known state, begin
every program with an initialization statement. For example, HP BASIC
provides a CLEAR command which clears the interface buffer:
CLEAR 707 ! initializes the interface of the oscilloscope

When you are using GPIB, CLEAR also resets the oscilloscope's parser. The
parser is the program that reads in the instructions you send.

After clearing the interface, initialize the oscilloscope to a preset state:
OUTPUT 707;"*RST" ! initializes the oscilloscope to a preset
state

Autoscale

The AUTOSCALE feature of Agilent Technologies digitizing oscilloscopes
performs a very useful function on unknown waveforms by automatically setting
up the vertical channel, time base, and trigger level of the oscilloscope.

The syntax for the autoscale function is:
:AUTOSCALE<terminator>

Setting Up the Oscilloscope

A typical oscilloscope setup configures the vertical range and offset voltage, the
horizontal range, delay time, delay reference, trigger mode, trigger level, and
slope.

A typical example of the commands sent to the oscilloscope are:
:CHANNEL1:PROBE 10; RANGE 16;OFFSET 1.00<terminator>
:SYSTEM:HEADER OFF<terminator>
:TIMEBASE:RANGE 1E-3;DELAY 100E-6<terminator>

This example sets the time base at 1 ms full-scale (100 µs/div), with delay of
100 µs. Vertical is set to 16 V full-scale (2 V/div), with center of screen at 1 V,
and probe attenuation of 10.

Initializing the Oscilloscope

The commands and syntax for initializing the oscilloscope are discussed in the
chapter, “Common Commands.” Refer to your GPIB manual and programming
language reference manual for information on initializing the interface.
1- 15

Introduction to Programming
Example Program using HP Basic
Example Program using HP Basic

This program demonstrates the basic command structure used to program the
oscilloscope.

10 CLEAR 707! Initialize oscilloscope interface
20 OUTPUT 707;"*RST"!Initialize oscilloscope to preset state
30 OUTPUT 707;":TIMEBASE:RANGE 5E-4"! Time base to 500 us full scale
40 OUTPUT 707;":TIMEBASE:DELAY 0"! Delay to zero
50 OUTPUT 707;":TIMEBASE:REFERENCE CENTER"! Display reference at center
60 OUTPUT 707;":CHANNEL1:PROBE 10"! Probe attenuation to 10:1
70 OUTPUT 707;":CHANNEL1:RANGE 1.6"! Vertical range to 1.6 V full scale
80 OUTPUT 707;":CHANNEL1:OFFSET -.4"! Offset to -0.4
90 OUTPUT 707;":CHANNEL1:INPUT DC"! Coupling to DC
100 OUTPUT 707;":TRIGGER:MODE EDGE"! Edge triggering
110 OUTPUT 707;":TRIGGER:LEVEL CHAN1,-.4"! Trigger level to -0.4
120 OUTPUT 707;":TRIGGER:SLOPE POSITIVE"! Trigger on positive slope
125 OUTPUT 707;":SYSTEM:HEADER OFF<terminator>
130 OUTPUT 707;":ACQUIRE:MODE RTIME"! Normal acquisition
140 OUTPUT 707;":DISPLAY:GRATICULE FRAME"! Grid off
150 END

Overview of the Program

• Line 10 initializes the oscilloscope interface to a known state.

• Line 20 initializes the oscilloscope to a preset state.

• Lines 30 through 50 set the time base, the horizontal time at 500 µs full scale,
and 0 s of delay referenced at the center of the graticule.

• Lines 60 through 90 set 10:1 probe attenuation, set the vertical range to
1.6 volts full scale, center screen at −0.4 volts, and select DC 1 Mohm
impedance coupling.

• Lines 100 through 120 configure the oscilloscope to trigger at −0.4 volts with
positive edge triggering.

• Line 125 turns system headers off.

• Line 130 configures the oscilloscope for real time acquisition.

• Line 140 turns the grid off.
1- 16

Introduction to Programming
Using the DIGITIZE Command
Using the DIGITIZE Command

The DIGITIZE command is a macro that captures data using the acquisition
(ACQUIRE) subsystem. When the digitize process is complete, the acquisition
is stopped. You can measure the captured data by using the oscilloscope or by
transferring the data to a computer for further analysis. The captured data
consists of two parts: the preamble and the waveform data record.

After changing the oscilloscope configuration, the waveform buffers are cleared.
Before doing a measurement, you should send the DIGITIZE command to
ensure new data has been collected.

You can send the DIGITIZE command with no parameters for a higher
throughput. Refer to the DIGITIZE command in the chapter, “Root Level
Commands” for details.

When the DIGITIZE command is sent to an oscilloscope, the specified channel’s
waveform is digitized using the current ACQUIRE parameters. Before sending
the :WAVEFORM:DATA? query to download waveform data to your computer,
you should specify the WAVEFORM parameters.

The number of data points comprising a waveform varies according to the
number requested in the ACQUIRE subsystem. The ACQUIRE subsystem
determines the number of data points, type of acquisition, and number of
averages used by the DIGITIZE command. This lets you specify exactly what
the digitized information contains. The following program example shows a
typical setup:
OUTPUT 707;":SYSTEM:HEADER OFF<terminator>
OUTPUT 707;":ACQUIRE:MODE RTIME"<terminator>
OUTPUT 707;":ACQUIRE:COMPLETE 100"<terminator>
OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:FORMAT BYTE"<terminator>
OUTPUT 707;":ACQUIRE:COUNT 8"<terminator>
OUTPUT 707;":ACQUIRE:POINTS 500"<terminator>
OUTPUT 707;":DIGITIZE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:DATA?"<terminator>

This setup places the oscilloscope into the real time sampling mode using eight
averages. This means that when the DIGITIZE command is received, the
command will execute until the waveform has been averaged at least eight
times.

After receiving the :WAVEFORM:DATA? query, the oscilloscope will start
downloading the waveform information.

Digitized waveforms are passed from the oscilloscope to the computer by
sending a numerical representation of each digitized point. The format of the
numerical representation is controlled by using the :WAVEFORM:FORMAT
command and may be selected as BYTE, WORD, or ASCII.
1- 17

Introduction to Programming
Using the DIGITIZE Command
The easiest method of receiving a digitized waveform depends on data
structures, available formatting, and I/O capabilities. You must convert the data
values to determine the voltage value of each point. These data values are
passed starting with the left most point on the oscilloscope's display. For more
information, refer to the chapter, “Waveform Commands.”

When using GPIB, you may abort a digitize operation by sending a Device Clear
over the bus (for example, CLEAR 707).
1- 18

Introduction to Programming
Receiving Information from the Oscilloscope
Receiving Information from the Oscilloscope

After receiving a query (a command header followed by a question mark), the
oscilloscope places the answer in its output queue. The answer remains in the
output queue until it is read or until another command is issued. When read,
the answer is transmitted across the interface to the computer. The input
statement for receiving a response message from an oscilloscope's output queue
typically has two parameters; the device address and a format specification for
handling the response message. For example, to read the result of the query
command :CHANNEL1:INPUT? you would execute the HP BASIC statement:
ENTER <device address> ;Setting$

This would enter the current setting for the channel 1 coupling in the string
variable Setting$. The device address parameter represents the address of the
oscilloscope.

All results for queries sent in a program message must be read before another
program message is sent. For example, when you send the query
:MEASURE:RISETIME?, you must follow that query with an input statement.
In HP BASIC, this is usually done with an ENTER statement.

The format specification for handling response messages depends on both the
computer and the programming language.

Handle Queries Properly

If you send another command or query before reading the result of a query, the output
buffer will be cleared and the current response will be lost. This will also generate
a query-interrupted error in the error queue. If you execute an input statement before
you send a query, it will cause the computer to wait indefinitely.
1- 19

Introduction to Programming
String Variable Example
String Variable Example

The output of the oscilloscope may be numeric or character data depending on
what is queried. Refer to the specific commands for the formats and types of
data returned from queries.

For the example programs, assume that the device being programmed is at
device address 707. The actual address depends on how you have configured
the bus for your own application.

In HP BASIC 5.0, string variables are case-sensitive, and must be expressed
exactly the same each time they are used. This example shows the data being
returned to a string variable:
10 DIM Rang$[30]
20 OUTPUT 707;":CHANNEL1:RANGE?"
30 ENTER 707;Rang$
40 PRINT Rang$
50 END

After running this program, the computer displays:

+8.00000E-01

Numeric Variable Example

This example shows the data being returned to a numeric variable:
10 OUTPUT 707;":CHANNEL1:RANGE?"
20 ENTER 707;Rang
30 PRINT Rang
40 END

After running this program, the computer displays:

.8
1- 20

Introduction to Programming
Definite-Length Block Response Data
Definite-Length Block Response Data

Definite-length block response data allows any type of device-dependent data
to be transmitted over the system interface as a series of 8-bit binary data bytes.
This is particularly useful for sending large quantities of data or 8-bit extended
ASCII codes. The syntax is a pound sign (#) followed by a non-zero digit
representing the number of digits in the decimal integer. After the non-zero
digit is the decimal integer that states the number of 8-bit data bytes being sent.
This is followed by the actual data.

For example, for transmitting 4000 bytes of data, the syntax would be:
#44000 <4000 bytes of data> <terminator>

The lifetimes “4” represents the number of digits in the number of bytes, and
“4000” represents the number of bytes to be transmitted.
1- 21

Introduction to Programming
Multiple Queries
Multiple Queries

You can send multiple queries to the oscilloscope within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a string variable or
into multiple numeric variables. For example, you could read the result of the
query :TIMEBASE:RANGE?;DELAY? into the string variable Results$ with the
command:

ENTER 707;Results$

When you read the result of multiple queries into string variables, each response
is separated by a semicolon. For example, the response of the query
:TIMEBASE:RANGE?;DELAY? would be:
<range_value>;<delay_value>

Use the following program message to read the query
:TIMEBASE:RANGE?;DELAY? into multiple numeric variables:

ENTER 707;Result1,Result2

Oscilloscope Status

Status registers track the current status of the oscilloscope. By checking the
oscilloscope status, you can find out whether an operation has completed and
is receiving triggers. The chapter, “Status Reporting” explains how to check
the status of the oscilloscope.
1- 22

2

LAN and GPIB Interfaces

2-2

LAN and GPIB Interfaces

There are two types of interfaces that can be used to remotely program
the Infiniium oscilloscope: Local Area Network (LAN) interface and
GPIB interface.

2-3

LAN and GPIB Interfaces
LAN Interface Connector

LAN Interface Connector

The oscilloscope is equiped with a LAN interface RJ-45 connector on the rear
panel. This allows direct connect to your network. However, before you can
use the LAN interface to program the oscilloscope, the network properties must
be configured. Unless you are a Network Administrator, you should contact
your Network Administrator to add the appropriate client, protocols, and
configuration information for your LAN. This information is different for every
company.

GPIB Interface Connector

The oscilloscope is equipped with a GPIB interface connector on the rear panel.
This allows direct connection to a GPIB equipped computer. You can connect
an external GPIB compatible device to the oscilloscope by installing a GPIB
cable between the two units. Finger tighten the captive screws on both ends
of the GPIB cable to avoid accidentally disconnecting the cable during
operation.

A maximum of fifteen GPIB compatible instruments (including a computer) can
be interconnected in a system by stacking connectors. This allows the
oscilloscopes to be connected in virtually any configuration, as long as there is
a path from the computer to every device operating on the bus.

C A U T I O N Avoid stacking more than three or four cables on any one connector. Multiple
connectors produce leverage that can damage a connector mounting.

2-4

LAN and GPIB Interfaces
Default Startup Conditions

Default Startup Conditions

The following default conditions are established during power-up:

• The Request Service (RQS) bit in the status byte register is set to zero.

• All of the event registers are cleared.

• The Standard Event Status Enable Register is set to 0xFF hex.

• Service Request Enable Register is set to 0x80 hex.

• The Operation Status Enable Register is set to 0xFFFF hex.

• The Overload Event Enable Register is set to 0xFF hex.

• The Mask Test Event Enable Register is set to 0xFF hex.

You can change the default conditions using the *PSC command with a
parameter of 1 (one). When set to 1, the Standard Event Status Enable Register
is set 0x00 hex and the Service Request Enable Register is set to 0x00 hex. This
prevents the Power On (PON) event from setting the SRQ interrupt when the
oscilloscope is ready to receive commands.

2-5

LAN and GPIB Interfaces
Interface Capabilities

Interface Capabilities

The interface capabilities of this oscilloscope, as defined by IEEE 488.1 and
IEEE 488.2, are listed in Table 2-1.

Table 2-1 Interface Capabilities

Code Interface Function Capability

SH1 Source Handshake Full Capability

AH1 Acceptor Handshake Full Capability

T5 Talker Basic Talker/Serial Poll/Talk Only Mode/
Unaddress if Listen Address (MLA)

L4 Listener Basic Listener/
Unaddresses if Talk Address (MTA)

SR1 Service Request Full Capability

RL1 Remote Local Complete Capability

PP0 Parallel Poll No Capability

DC1 Device Clear Full Capability

DT1 Device Trigger Full Capability

C0 Computer No Capability

E2 Driver Electronics Tri State (1 MB/SEC MAX)

2-6

LAN and GPIB Interfaces
GPIB Command and Data Concepts

GPIB Command and Data Concepts

The GPIB interface has two modes of operation: command mode and data mode.
The interface is in the command mode when the Attention (ATN) control line
is true. The command mode is used to send talk and listen addresses and various
interface commands such as group execute trigger (GET).

The interface is in the data mode when the ATN line is false. The data mode is
used to convey device-dependent messages across the bus. The
device-dependent messages include all of the oscilloscope-specific commands,
queries, and responses found in this manual, including oscilloscope status
information.

2-7

LAN and GPIB Interfaces
Communicating Over the GPIB Interface

Communicating Over the GPIB Interface

Device addresses are sent by the computer in the command mode to specify
who talks and who listens. Because GPIB can address multiple devices through
the same interface card, the device address passed with the program message
must include the correct interface select code and the correct oscilloscope
address.

Device Address = (Interface Select Code * 100) + Oscilloscope Address

Interface Select Code

Each interface card has a unique interface select code. This code is used by
the computer to direct commands and communications to the proper interface.
The default is typically “7” for the GPIB interface cards.

Oscilloscope Address

Each oscilloscope on the GPIB must have a unique oscilloscope address
between decimal 0 and 30. This oscilloscope address is used by the computer
to direct commands and communications to the proper oscilloscope on an
interface. The default is typically “7” for this oscilloscope. You can change the
oscilloscope address in the Utilities, Remote Interface dialog box.

The Oscilloscope is at Address 707 for Programming Examples

The programming examples in this manual assume that the oscilloscope is at device
address 707.

Do Not Use Address 21 for an Oscilloscope Address

Address 21 is usually reserved for the Computer interface Talk/Listen address, and
should not be used as an oscilloscope address.

2-8

LAN and GPIB Interfaces
Communicating Over the LAN Interface

Communicating Over the LAN Interface

The device address used to send commands and receive data using the LAN
interface is located in the GPIB Setup dialog box as shown below.

GPIB Setup Dialog Box

The following C example program shows how to communicate with the
oscilloscope using the LAN interface and the Agilent Standard Instrument
Control Library (SICL).
#include <sicl.h>

#define BUFFER_SIZE 1024

main()
{
INST Bus;
int reason;
unsigned long actualcnt;
char buffer[BUFFER_SIZE];

 /* Open the LAN interface */
 Bus = iopen(“lan[130.29.71.45]:hpib7,7”);
 if(Bus != 0) {
 /* Bus timeout set to 20 seconds */
 itimeout(Bus, 20000);

 /* Clear the interface */
 iclear(Bus);
 /* Query and print the oscilloscope’s Id */
 iwrite(Bus, “*IDN?”, 5, 1, &actualcnt);
 iread(Bus, buffer, BUFFER_SIZE, &reason, &actualcnt);

LAN Address

2-9

LAN and GPIB Interfaces
Communicating Over the LAN Interface

 buffer[actualcnt - 1] = 0;

 printf(“%s\n”, buffer);
 iclose(Bus);
 }
}

2-10

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true).
IEEE 488.2 defines many of the actions that are taken when these commands
are received by the oscilloscope.

Device Clear

The device clear (DCL) and selected device clear (SDC) commands clear the
input buffer and output queue, reset the parser, and clear any pending
commands. If either of these commands is sent during a digitize operation, the
digitize operation is aborted.

Group Execute Trigger

The group execute trigger (GET) command arms the trigger. This is the same
action produced by sending the RUN command.

Interface Clear

The interface clear (IFC) command halts all bus activity. This includes
unaddressing all listeners and the talker, disabling serial poll on all devices, and
returning control to the system computer.

3

Message Communication and System
Functions

3-2

Message Communication and System
Functions

This chapter describes the operation of oscilloscopes that operate in
compliance with the IEEE 488.2 (syntax) standard. It is intended to give
you enough basic information about the IEEE 488.2 standard to
successfully program the oscilloscope. You can find additional detailed
information about the IEEE 488.2 standard in ANSI/IEEE Std 488.2-
1987, “IEEE Standard Codes, Formats, Protocols, and Common

Commands.”

This oscilloscope series is designed to be compatible with other Agilent
Technologies IEEE 488.2 compatible instruments. Oscilloscopes that
are compatible with IEEE 488.2 must also be compatible with IEEE 488.1
(GPIB bus standard); however, IEEE 488.1 compatible oscilloscopes
may or may not conform to the IEEE 488.2 standard. The IEEE 488.2
standard defines the message exchange protocols by which the
oscilloscope and the computer will communicate. It also defines some
common capabilities that are found in all IEEE 488.2 oscilloscopes.
This chapter also contains some information about the message
communication and system functions not specifically defined by
IEEE 488.2.

3-3

Message Communication and System Functions
Protocols

Protocols

The message exchange protocols of IEEE 488.2 define the overall scheme used
by the computer and the oscilloscope to communicate. This includes defining
when it is appropriate for devices to talk or listen, and what happens when the
protocol is not followed.

Functional Elements

Before proceeding with the description of the protocol, you should understand
a few system components, as described here.

Input Buffer The input buffer of the oscilloscope is the
memory area where commands and queries are
stored prior to being parsed and executed. It
allows a computer to send a string of commands,
which could take some time to execute, to the
oscilloscope, then proceed to talk to another
oscilloscope while the first oscilloscope is
parsing and executing commands.

Output Queue The output queue of the oscilloscope is the
memory area where all output data or response
messages are stored until read by the computer.

Parser The oscilloscope's parser is the component
that interprets the commands sent to the
oscilloscope and decides what actions should be
taken. “Parsing” refers to the action taken by
the parser to achieve this goal. Parsing and
execution of commands begins when either the
oscilloscope recognizes a program message
terminator, or the input buffer becomes full. If
you want to send a long sequence of commands
to be executed, then talk to another oscilloscope
while they are executing, you should send all of
the commands before sending the program
message terminator.

3-4

Message Communication and System Functions
Protocols

Protocol Overview

The oscilloscope and computer communicate using program messages and
response messages. These messages serve as the containers into which sets of
program commands or oscilloscope responses are placed.

A program message is sent by the computer to the oscilloscope, and a response
message is sent from the oscilloscope to the computer in response to a query
message. A query message is defined as being a program message that contains
one or more queries. The oscilloscope will only talk when it has received a valid
query message, and therefore has something to say. The computer should only
attempt to read a response after sending a complete query message, but before
sending another program message.

Protocol Operation

When you turn the oscilloscope on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The oscilloscope and the computer communicate by exchanging complete
program messages and response messages. This means that the computer
should always terminate a program message before attempting to read a
response. The oscilloscope will terminate response messages except during a
hard copy output.

After you send a query message, the next message should be the response
message. The computer should always read the complete response message
associated with a query message before sending another program message to
the same oscilloscope.

The oscilloscope allows the computer to send multiple queries in one query
message. This is called sending a “compound query.” Multiple queries in a
query message are separated by semicolons. The responses to each of the
queries in a compound query will also be separated by semicolons.

Commands are executed in the order they are received.

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner.

Remember this Rule of Oscilloscope Communication

The basic rule to remember is that the oscilloscope will only talk when prompted to,
and it then expects to talk before being told to do something else.

3-5

Message Communication and System Functions
Protocols

Suffix Multiplier

The suffix multipliers that the oscilloscope will accept are shown in Table 3-1.

Table 3-1 <suffix mult>

Suffix Unit

The suffix units that the oscilloscope will accept are shown in Table 3-2.

Table 3-2 <suffix unit>

Value Mnemonic Value Mnemonic

1E18 EX 1E-3 M

1E15 PE 1E-6 U

1E12 T 1E-9 N

1E9 G 1E-12 P

1E6 MA 1E-15 F

1E3 K 1E-18 A

Suffix Referenced Unit

V Volt

S Second

3-6

4

Status Reporting

4-2

Status Reporting

An overview of the oscilloscope's status reporting structure is shown in
Figure 4-1. The status reporting structure shows you how to monitor
specific events in the oscilloscope. Monitoring these events lets you
determine the status of an operation, the availability and reliability of
the measured data, and more.

• To monitor an event, first clear the event, then enable the event. All
of the events are cleared when you initialize the oscilloscope.

• To generate a service request (SRQ) interrupt to an external
computer, enable at least one bit in the Status Byte Register.

The Status Byte Register, the Standard Event Status Register group, and
the Output Queue are defined as the Standard Status Data Structure
Model in IEEE 488.2-1987. IEEE 488.2 defines data structures,
commands, and common bit definitions for status reporting. There are
also oscilloscope-defined structures and bits.

4-3

Figure 4-1

Status Reporting Overview Block Diagram

The status reporting structure consists of the registers shown here.

Table 4-1 lists the bit definitions for each bit in the status reporting data
structure.

Table 4-1 Status Reporting Bit Definition

Bit Description Definition

PON Power On Indicates power is turned on.

URQ User Request Not Used. Permanently set to zero.

CME Command Error Indicates if the parser detected an error.

EXE Execution Error Indicates if a parameter was out of range or was
inconsistent with the current settings.

DDE Device Dependent Error Indicates if the device was unable to complete an
operation for device-dependent reasons.

QYE Query Error Indicates if the protocol for queries has been violated.

RQL Request Control Indicates if the device is requesting control.

4-4

OPC Operation Complete Indicates if the device has completed all pending
operations.

OPER Operation Status Register Indicates if any of the enabled conditions in the
Operation Status Register have occurred.

RQS Request Service Indicates that the device is requesting service.

MSS Master Summary Status Indicates if a device has a reason for requesting service.

ESB Event Status Bit Indicates if any of the enabled conditions in the Standard
Event Status Register have occurred.

MAV Message Available Indicates if there is a response in the output queue.

MSG Message Indicates if an advisory has been displayed.

USR User Event Register Indicates if any of the enabled conditions have occurred
in the User Event Register.

TRG Trigger Indicates if a trigger has been received.

WAIT TRIG Wait for Trigger Indicates the oscilloscope is armed and ready for
trigger.

Bit Description Definition

4-5

Status Reporting
Status Reporting Data Structures

Status Reporting Data Structures

The different status reporting data structures, descriptions, and interactions
are shown in Figure 4-2. To make it possible for any of the Standard Event
Status Register bits to generate a summary bit, you must enable the
corresponding bits. These bits are enabled by using the *ESE common
command to set the corresponding bit in the Standard Event Status Enable
Register.

To generate a service request (SRQ) interrupt to the computer, you must enable
at least one bit in the Status Byte Register. These bits are enabled by using the
*SRE common command to set the corresponding bit in the Service Request
Enable Register. These enabled bits can then set RQS and MSS (bit 6) in the
Status Byte Register.

For more information about common commands, see the “Common Commands”
chapter.

4-6

Status Reporting
Status Reporting Data Structures

Figure 4-2

Status Reporting Data Structures

4-7

Status Reporting
Status Reporting Data Structures

Figure 4-2 (Continued)

Status Reporting Data Structures (Continued)

4-8

Status Reporting
Status Byte Register

Status Byte Register

The Status Byte Register is the summary-level register in the status reporting
structure. It contains summary bits that monitor activity in the other status
registers and queues. The Status Byte Register is a live register. That is, its
summary bits are set and cleared by the presence and absence of a summary
bit from other event registers or queues.

If the Status Byte Register is to be used with the Service Request Enable
Register to set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the
summary bits must be enabled, then set. Also, event bits in all other status
registers must be specifically enabled to generate the summary bit that sets the
associated summary bit in the Status Byte Register.

You can read the Status Byte Register using either the *STB? common command
query or the GPIB serial poll command. Both commands return the decimal-
weighted sum of all set bits in the register. The difference between the two
methods is that the serial poll command reads bit 6 as the Request Service
(RQS) bit and clears the bit which clears the SRQ interrupt. The *STB? query
reads bit 6 as the Master Summary Status (MSS) and does not clear the bit or
have any effect on the SRQ interrupt. The value returned is the total bit weights
of all of the bits that are set at the present time.

The use of bit 6 can be confusing. This bit was defined to cover all possible
computer interfaces, including a computer that could not do a serial poll. The
important point to remember is that if you are using an SRQ interrupt to an
external computer, the serial poll command clears bit 6. Clearing bit 6 allows
the oscilloscope to generate another SRQ interrupt when another enabled event
occurs.

The only other bit in the Status Byte Register affected by the *STB? query is
the Message Available bit (bit 4). If there are no other messages in the Output
Queue, bit 4 (MAV) can be cleared as a result of reading the response to the
*STB? query.

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, a program would print the
sum of the two weights. Since these bits were not enabled to generate an SRQ,
bit 6 (weight = 64) is not set.

4-9

Status Reporting
Status Byte Register

Example 1 This HP BASIC example uses the *STB? query to read the contents of the
oscilloscope’s Status Byte Register when none of the register's summary bits
are enabled to generate an SRQ interrupt.
10 OUTPUT 707;":SYSTEM:HEADER OFF;*STB?" !Turn headers off
20 ENTER 707;Result !Place result in a numeric variable
30 PRINT Result !Print the result
40 End

The next program prints 132 and clears bit 6 (RQS) of the Status Byte Register.
The difference in the decimal value between this example and the previous one
is the value of bit 6 (weight = 64). Bit 6 is set when the first enabled summary
bit is set, and is cleared when the Status Byte Register is read by the serial poll
command.

Example 2 This example uses the HP BASIC serial poll (SPOLL) command to read the
contents of the oscilloscope’s Status Byte Register.
10 Result = SPOLL(707)
20 PRINT Result
30 END

Use Serial Polling to Read the Status Byte Register

Serial polling is the preferred method to read the contents of the Status Byte Register
because it resets bit 6 and allows the next enabled event that occurs to generate a
new SRQ interrupt.

4-10

Status Reporting
Service Request Enable Register

Service Request Enable Register

Setting the Service Request Enable Register bits enables corresponding bits in
the Status Byte Register. These enabled bits can then set RQS and MSS (bit 6)
in the Status Byte Register.

Bits are set in the Service Request Enable Register using the *SRE command,
and the bits that are set are read with the *SRE? query. Bit 6 always returns 0.
Refer to the Status Reporting Data Structures shown in Figure 4-2.

Example This example sets bit 4 (MAV) and bit 5 (ESB) in the Service Request Enable
Register.

OUTPUT 707;"*SRE 48"

This example uses the parameter “48” to allow the oscilloscope to generate an
SRQ interrupt under the following conditions:

• When one or more bytes in the Output Queue set bit 4 (MAV).

• When an enabled event in the Standard Event Status Register generates a
summary bit that sets bit 5 (ESB).

Message Event Register

This register sets the MSG bit in the status byte register when an internally
generated message is written to the advisory line on the oscilloscope. The
message is read using the :SYSTEM:DSP? query. Note that messages written
to the advisory line on the oscilloscope using the :SYSTEM:DSP command does
not set the MSG status bit.

Trigger Event Register

This register sets the TRG bit in the status byte register when a trigger event
occurs.

The trigger event register stays set until it is cleared by reading the register
with the TER? query or by using the *CLS (clear status) command. If your
application needs to detect multiple triggers, the trigger event register must be
cleared after each one.

If you are using the Service Request to interrupt a computer operation when
the trigger bit is set, you must clear the event register after each time it is set.

4-11

Status Reporting
Standard Event Status Register

Standard Event Status Register

The Standard Event Status Register (SESR) monitors the following oscilloscope
status events:

• PON - Power On

• CME - Command Error

• EXE - Execution Error

• DDE - Device Dependent Error

• QYE - Query Error

• RQC - Request Control

• OPC - Operation Complete

When one of these events occurs, the corresponding bit is set in the register.
If the corresponding bit is also enabled in the Standard Event Status Enable
Register, a summary bit (ESB) in the Status Byte Register is set.

You can read the contents of the Standard Event Status Register and clear the
register by sending the *ESR? query. The value returned is the total bit weights
of all bits set at the present time.

Example This example uses the *ESR? query to read the contents of the Standard Event
Status Register.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Turn headers off
20 OUTPUT 707;"*ESR?"
30 ENTER 707;Result !Place result in a numeric variable
40 PRINT Result !Print the result
50 End

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the
sum of the two weights.

4-12

Status Reporting
Standard Event Status Enable Register

Standard Event Status Enable Register

For any of the Standard Event Status Register bits to generate a summary bit,
you must first enable the bit. Use the *ESE (Event Status Enable) common
command to set the corresponding bit in the Standard Event Status Enable
Register. Set bits are read with the *ESE? query.

Example Suppose your application requires an interrupt whenever any type of error
occurs. The error status bits in the Standard Event Status Register are bits
2 through 5. The sum of the decimal weights of these bits is 60. Therefore, you
can enable any of these bits to generate the summary bit by sending:
OUTPUT 707;"*ESE 60"

Whenever an error occurs, the oscilloscope sets one of these bits in the Standard
Event Status Register. Because the bits are all enabled, a summary bit is
generated to set bit 5 (ESB) in the Status Byte Register.

If bit 5 (ESB) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

Disabled Standard Event Status Register Bits Respond, but Do Not Generate a
Summary Bit

Standard Event Status Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).
However, because they are not enabled, they do not generate a summary bit in the
Status Byte Register.

4-13

Status Reporting
Operation Status Register

Operation Status Register

This register hosts the following bits:

• Acquisition done bit (bit 0)

• WAIT TRIG bit (bit 5)

• Mask Test Summary bit (bit 9)

• Auto trigger bit (bit 11)

• Overload Summary bit (bit 12)

The acquisition done bit is set by the Acquisition Done Event Register.

The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates
the trigger is armed.

The Mask Test Summary bit is set whenever at least one of the Mask Test Event
Register bits is enabled.

The auto trigger bit is set by the Auto Trigger Event Register.

The Overload Summary bit is set whenever at least one of the Overload Event
Register bits is enabled.

If any of these bits are set, the OPER bit (bit 7) of the Status Byte Register is
set. The Operation Status Register is read and cleared with the OPER? query.
The register output is enabled or disabled using the mask value supplied with
the OPEE command.

4-14

Status Reporting
Operation Status Enable Register

Operation Status Enable Register

For any of the Operation Status Register bits to generate a summary bit, you
must first enable the bit. Use the OPEE (Operation Event Status Enable)
command to set the corresponding bit in the Operation Status Enable Register.
Set bits are read with the OPEE? query.

Example Suppose your application requires an interrupt whenever any event occurs in
the mask test register. The error status bit in the Operation Status Register is
bit 9. Therefore, you can enable this bit to generate the summary bit by sending:
OUTPUT 707;”OPEE 512” (hex 200)

Whenever an error occurs, the oscilloscope sets this bit in the Mask Test Event
Register. Because this bit is enabled, a summary bit is generated to set bit 9
(OPER) in the Operation Status Register.

If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

Disabled Operation Status Register Bits Respond, but Do Not Generate a Summary
Bit

Operation Status Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).
However, because they are not enabled, they do not generate a summary bit in the
Status Byte Register.

4-15

Status Reporting
Mask Test Event Register

Mask Test Event Register

This register hosts the following bits:

• Mask Test Complete bit (bit 0)

• Mask Test Fail bit (bit 1)

• Mask Low Amplitude bit (bit 2)

• Mask High Amplitude bit (bit 3)

• Mask Align Complete bit (bit 4)

• Mask Align Fail bit (bit 5)

The Mask Test Complete bit is set whenever the mask test is complete.

The Mask Test Fail bit is set whenever the mask test failed.

The Mask Low Amplitude bit is set whenever the signal is below the mask
amplitude.

The Mask High Amplitude bit is set whenever the signal is above the mask
amplitude.

The Mask Align Complete bit is set whenever the mask align is complete.

The Mask Align Fail bit is set whenever the mask align failed.

If any of these bits are set, the MASK bit (bit 9) of the Operation Status Register
is set. The Mask Test Event Register is read and cleared with the MTER? query.
The register output is enabled or disabled using the mask value supplied with
the MTEE command.

4-16

Status Reporting
Mask Test Event Enable Register

Mask Test Event Enable Register

For any of the Mask Test Event Register bits to generate a summary bit, you
must first enable the bit. Use the MTEE (Mask Test Event Enable) command
to set the corresponding bit in the Mask Test Event Enable Register. Set bits
are read with the MTEE? query.

Example Suppose your application requires an interrupt whenever a Mask Test Fail
occurs in the mask test register. You can enable this bit to generate the summary
bit by sending:
OUTPUT 707;”MTEE 2”

Whenever an error occurs, the oscilloscope sets the MASK bit in the Operation
Status Register. Because the bits in the Operation Status Enable Register are
all enabled, a summary bit is generated to set bit 7 (OPER) in the Status Byte
Register.

If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

Disabled Mask Test Event Register Bits Respond, but Do Not Generate a Summary
Bit

Mask Test Event Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).
However, because they are not enabled, they do not generate a summary bit in the
Operation Status Register.

4-17

Status Reporting
Trigger Armed Event Register

Trigger Armed Event Register

This register sets bit 5 (Wait Trig bit) in the Operation Status Register and bit
7 (OPER bit) in the Status Byte Register when the oscilloscope becomes armed.

The ARM event register stays set until it is cleared by reading the register with
the AER? query or by using the *CLS command. If your application needs to
detect multiple triggers, the ARM event register must be cleared after each one.

If you are using the Service Request to interrupt the computer operation when
the trigger bit is set, you must clear the event register after each time it is set.

Acquisition Done Event Register

This register sets bit 0 (Acq Done bit) in the Operation Status Register and bit
7 (OPER bit) in the Status Byte Register when the oscilloscope acquisition is
completed.

The DONE event register stays set until it is cleared by reading the register with
the ADER? query or by using the *CLS command. If your application needs to
detect multiple acquisitions, the DONE event register must be cleared after
each acquisition.

If you are using the Service Request to interrupt the computer operation when
the trigger bit is set, you must clear the event register after each time it is set.

4-18

Status Reporting
Error Queue

Error Queue

As errors are detected, they are placed in an error queue. This queue is a first-
in, first-out queue. If the error queue overflows, the last error in the queue is
replaced with error -350, “Queue overflow.” Any time the queue overflows, the
oldest errors remain in the queue, and the most recent error is discarded. The
length of the oscilloscope's error queue is 30 (29 positions for the error
messages, and 1 position for the “Queue overflow” message).

The error queue is read with the :SYSTEM:ERROR? query. Executing this query
reads and removes the oldest error from the head of the queue, which opens a
position at the tail of the queue for a new error. When all the errors have been
read from the queue, subsequent error queries return 0, “No error.”

The error queue is cleared when any of these events occur:

• When the oscilloscope is powered up.

• When the oscilloscope receives the *CLS common command.

• When the last item is read from the error queue.

For more information on reading the error queue, refer to the
:SYSTEM:ERROR? query in the System Commands chapter. For a complete
list of error messages, refer to the chapter, “Error Messages.”

Output Queue

The output queue stores the oscilloscope-to-computer responses that are
generated by certain oscilloscope commands and queries. The output queue
generates the Message Available summary bit when the output queue contains
one or more bytes. This summary bit sets the MAV bit (bit 4) in the Status Byte
Register. You may read the output queue with the HP Basic ENTER statement.

4-19

Status Reporting
Message Queue

Message Queue

The message queue contains the text of the last message written to the advisory
line on the screen of the oscilloscope. The queue is read with the
:SYSTEM:DSP? query. Note that messages sent with the :SYSTEM:DSP
command do not set the MSG status bit in the Status Byte Register.

Clearing Registers and Queues

The *CLS common command clears all event registers and all queues except
the output queue. If *CLS is sent immediately following a program message
terminator, the output queue is also cleared.

4-20

Figure 4-3

Status Reporting Decision Chart

5

Programming Conventions

5-2

Programming Conventions

This chapter describes conventions used to program the Infiniium-Series
Oscilloscopes, and conventions used throughout this manual. A
description of the command tree and command tree traversal is also
included.

5-3

Programming Conventions
Truncation Rule

Truncation Rule

The truncation rule is used to produce the short form (abbreviated spelling) for
the mnemonics used in the programming headers and parameter arguments.

Table 5-1 shows how the truncation rule is applied to commands.

Table 5-1 Mnemonic Truncation

Command Truncation Rule

The mnemonic is the first four characters of the keyword, unless the fourth character
is a vowel. Then the mnemonic is the first three characters of the keyword. If the
length of the keyword is four characters or less, this rule does not apply, and the
short form is the same as the long form.

Long Form Short Form How the Rule is Applied

RANGE RANG Short form is the first four characters of the keyword.

PATTERN PATT Short form is the first four characters of the keyword.

DISK DISK Short form is the same as the long form.

DELAY DEL Fourth character is a vowel; short form is the first three
characters.

5-4

Programming Conventions
The Command Tree

The Command Tree

The command tree in Figure 5-1 shows all of the commands in the Infiniium-
Series Oscilloscopes and the relationship of the commands to each other. The
IEEE 488.2 common commands are not listed as part of the command tree
because they do not affect the position of the parser within the tree.

When a program message terminator (<NL>, linefeed - ASCII decimal 10) or a
leading colon (:) is sent to the oscilloscope, the parser is set to the “root” of the
command tree.

Command Types

The commands in this oscilloscope can be viewed as three types: common
commands, root level commands, and subsystem commands.

• Common commands are commands defined by IEEE 488.2 and control some
functions that are common to all IEEE 488.2 instruments. These commands
are independent of the tree and do not affect the position of the parser within
the tree. *RST is an example of a common command.

• Root level commands control many of the basic functions of the oscilloscope.
These commands reside at the root of the command tree. They can always
be parsed if they occur at the beginning of a program message or are
preceded by a colon. Unlike common commands, root level commands place
the parser back at the root of the command tree. AUTOSCALE is an example
of a root level command.

• Subsystem commands are grouped together under a common node of the
command tree, such as the TIMEBASE commands. You may select only one
subsystem at a given time. When you turn on the oscilloscope initially, the
command parser is set to the root of the command tree and no subsystem is
selected.

5-5

Programming Conventions
The Command Tree

Tree Traversal Rules

Command headers are created by traversing down the command tree. A legal
command header from the command tree would be :TIMEBASE:RANGE. This
is referred to as a compound header. A compound header is a header made up
of two or more mnemonics separated by colons. The compound header contains
no spaces. The following rules apply to traversing the tree.

In the command tree, use the last mnemonic in the compound header as a
reference point (for example, RANGE). Then find the last colon above that
mnemonic (TIMEBASE:). That is the point where the parser resides. You can
send any command below this point within the current program message
without sending the mnemonics which appear above them (for example,
REFERENCE).

Tree Traversal Rules

A leading colon or a program message terminator (<NL> or EOI true on the last byte)
places the parser at the root of the command tree. A leading colon is a colon that is
the first character of a program header. Executing a subsystem command places
the oscilloscope in that subsystem until a leading colon or a program message
terminator is found.

5-6

Programming Conventions
The Command Tree

Figure 5-1

Command Tree

5-7

Programming Conventions
The Command Tree

Figure 5-2

Command Tree (Continued)

5-8

Programming Conventions
The Command Tree

Figure 5-3

Command Tree (Continued)

5-9

Programming Conventions
The Command Tree

Figure 5-4

Command Tree (Continued)

5-10

Programming Conventions
The Command Tree

Figure 5-5

Command Tree (Continued)

5-11

Programming Conventions
The Command Tree

Figure 5-6

Command Tree (Continued)

5-12

Programming Conventions
The Command Tree

Figure 5-7

Command Tree (Continued)

BUS<N>, DIGital<N>, and POD<N>
commands only available on the MSO
oscilloscopes

5-13

Programming Conventions
The Command Tree

Tree Traversal Examples

The OUTPUT statements in the following examples are written using
HP BASIC 5.0. The quoted string is placed on the bus, followed by a carriage
return and linefeed (CRLF).

Example 1 Consider the following command:

OUTPUT 707;":CHANNEL1:RANGE 0.5;OFFSET 0"

The colon between CHANNEL1 and RANGE is necessary because
:CHANNEL1:RANGE is a compound command. The semicolon between the
RANGE command and the OFFSET command is required to separate the two
commands or operations. The OFFSET command does not need :CHANNEL1
preceding it because the :CHANNEL1:RANGE command sets the parser to the
CHANNEL1 node in the tree.

Example 2 Consider the following commands:

OUTPUT 707;":TIMEBASE:REFERENCE CENTER;POSITION 0.00001"

or

OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
OUTPUT 707;":TIMEBASE:POSITION 0.00001"

In the first line of example 2, the “subsystem selector” is implied for the
POSITION command in the compound command.

A second way to send these commands is shown in the second part of the
example. Because the program message terminator places the parser back at
the root of the command tree, you must reselect TIMEBASE to re-enter the
TIMEBASE node before sending the POSITION command.

Example 3 Consider the following command:

OUTPUT 707;":TIMEBASE:REFERENCE CENTER;:CHANNEL1:OFFSET 0"

In this example, the leading colon before CHANNEL1 tells the parser to go back
to the root of the command tree. The parser can then recognize the
:CHANNEL1:OFFSET command and enter the correct node.

5-14

Programming Conventions
Infinity Representation

Infinity Representation

The representation for infinity for this oscilloscope is 9.99999E+37. This is also
the value returned when a measurement cannot be made.

Sequential and Overlapped Commands

IEEE 488.2 makes a distinction between sequential and overlapped commands.
Sequential commands finish their task before the execution of the next
command starts. Overlapped commands run concurrently. Commands
following an overlapped command may be started before the overlapped
command is completed.

Response Generation

As defined by IEEE 488.2, query responses may be buffered for these reasons:

• When the query is parsed by the oscilloscope.

• When the computer addresses the oscilloscope to talk so that it may read the
response.

This oscilloscope buffers responses to a query when the query is parsed.

EOI

The EOI bus control line follows the IEEE 488.2 standard without exception.

6

Sample Programs

6-2

Sample Programs

Sample programs for the Infiniium-Series Oscilloscopes are shipped on
a CD ROM with the instrument. Each program demonstrates specific
sets of instructions.

This chapter shows you some of those functions, and describes the
commands being executed. Both C and BASIC examples are included.

The header file is:

• gpibdecl.h

The C examples include:

• init.c
• gen_srq.c
• srqagi.c
• srqnat.c
• learnstr.c
• sicl_IO.c
• natl_IO.c

The BASIC examples include:

• init.bas
• srq.bas
• lrn_str.bas

The sample program listings are included at the end of this chapter.

6-3

Sample Program Structure

This chapter includes segments of both the C and BASIC sample
programs. Each program includes the basic functions of initializing the
interface and oscilloscope, capturing the data, and analyzing the data.

In general, both the C and BASIC sample programs typically contain the
following fundamental segments:

Segment Description

main program Defines global variables and constants, specifies include files,
and calls various functions.

initialize Initializes the GPIB or LAN interface and oscilloscope, and sets
up the oscilloscope and the ACQuire subsystem.

acquire_data Digitizes the waveform to capture data.

auto_measurements Performs simple parametric measurements.

transfer_data Brings waveform data and voltage/timing information (the
preamble) into the computer.

The BASIC programming language can be used to set up and transfer data to your
PC. However, because of the limitations of BASIC, it is not the best language to use
when transferring large amounts of data to your PC.

6-4

Sample Programs
Sample C Programs

Sample C Programs

Segments of the sample programs “init.c” and “gen_srq.c” are shown and
described in this chapter.

init.c - Initialization

/* init. c */

/* Command Order Example. This program demonstrates the order of commands
 suggested for operation of the 8000A oscilloscope via GPIB.
 This program initializes the oscilloscope, acquires data, performs
 automatic measurements, and transfers and stores the data on the
 PC as time/voltage pairs in a comma-separated file format useful
 for spreadsheet applications. It assumes a SICL INTERFACE exists
 as 'hpib7' and an 8000A oscilloscope at address 7.
 It also requires a waveform connected to Channel 1.

 See the README file on the demo disk for development and linking information.
*/

#include <stdio.h> /* location of: printf() */
#include <stdlib.h> /* location of: atof(), atoi() */
#include "gpibdecl.h" /* prototypes, global declarations, constants */

void initialize(void); /* initialize the oscilloscope */
void acquire_data(void); /* digitize waveform */
void auto_measurements(void); /* perform built-in automatic measurements */
void transfer_data(void); /* transfers waveform data from oscilloscope to PC */
int convert_data(int, int); /* converts data to time/voltage values */
void store_csv(FILE *, int); /* stores time/voltage pairs to */
 /* comma-separated variable file format */

The include statements start the program. The file “gpibdecl.h” includes
prototypes and declarations that are necessary for the Infiniium Oscilloscope
sample programs.

This segment of the sample program defines the functions, in order, that are
used to initialize the oscilloscope, digitize the data, perform measurements,
transfer data from the oscilloscope to the PC, convert the digitized data to time
and voltage pairs, and store the converted data in comma-separated variable
file format.

See the following descriptions of the program segments.

6-5

Sample Programs
Sample C Programs

 init.c - Global Definitions and Main Program

/* GLOBALS */
int count;
double xorg,xinc; /* values necessary for conversion of data */
double yorg,yinc;
int Acquired_length;
char data[MAX_LENGTH]; /* data buffer */
double time_value[MAX_LENGTH]; /* time value of data */
double volts[MAX_LENGTH]; /* voltage value of data */

void main(void)
{
/* initialize interface and device sessions */
/* note: routine found in sicl_IO.c or natl_IO.c */

 if(init_IO())
 {

 /* initialize the oscilloscope and interface and set up SRQ */
 initialize();
 acquire_data(); /* capture the data */

 /* perform automated measurements on acquired data */
 auto_measurements();

 /* transfer waveform data to the PC from oscilloscope */
 transfer_data();
 close_IO(); /* close interface and device sessions */
 }
} /* end main() */

The init_IO routine initializes the oscilloscope and interface so that the
oscilloscope can capture data and perform measurements on the data. At the
start of the program, global symbols are defined which will be used to store and
convert the digitized data to time and voltage values.

6-6

Sample Programs
Sample C Programs

init.c - Initializing the Oscilloscope

/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the oscilloscope for proper
* acquisition of data. The instrument is reset to a known state and the
* interface is cleared. System headers are turned off to allow faster
* throughput and immediate access to the data values requested by queries.
* The oscilloscope time base, channel, and trigger subsystems are then
* configured. Finally, the acquisition subsystem is initialized.
*/
void initialize(void)
{
 write_IO("*RST"); /* reset oscilloscope - initialize to known state */
 write_IO("*CLS"); /* clear status registers and output queue */

 write_IO(":SYSTem:HEADer OFF"); /* turn off system headers */

 /* initialize time base parameters to center reference, */
 /* 2 ms full-scale (200 us/div), and 20 us delay */
 write_IO(":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6");

 /* initialize Channel1 1.6V full-scale (200 mv/div); offset -400mv */
 write_IO(":CHANnel1:RANGe 1.6;OFFSet -400e-3");

 /* initialize trigger info: channel1 waveform on positive slope at 300mv */
 write_IO(":TRIGger:EDGE:SOURce CHANnel1;SLOPe POSitive");
 write_IO(":TRIGger:LEVel CHANnel1,-0.40");

 /* initialize acquisition subsystem */
 /* Real time acquisition - no averaging; memory depth 1,000,000 */
 write_IO(":ACQuire:MODE RTIMe;AVERage OFF;POINts 1000000");

} /* end initialize() */

6-7

Sample Programs
Sample C Programs

init.c - Acquiring Data

/*
* Function name: acquire_data
* Parameters: none
* Return value: none
* Description: This routine acquires data according to the current
* instrument settings.
*/
void acquire_data(void)
{
/*
* The root level :DIGitize command is recommended for acquisition of new
* data. It will initialize data buffers, acquire new data, and ensure that
* acquisition criteria are met before acquisition of data is stopped. The
* captured data is then available for measurements, storage, or transfer
* to a PC. Note that the display is automatically turned off by the
* :DIGitize command and must be turned on to view the captured data.
*/

 write_IO(":DIGitize CHANnel1");
 write_IO(":CHANnel1:DISPlay ON"); /* turn on channel 1 display which is */
 /* turned off by the :DIGitize command */

} /* end acquire_data() */

6-8

Sample Programs
Sample C Programs

init.c - Making Automatic Measurements

/*
* Function name: auto_measurements
* Parameters: none
* Return value: none
* Description: This routine performs automatic measurements of volts
* peak-to-peak and frequency on the acquired data. It also demonstrates
* two methods of error detection when using automatic measurements.
*/

void auto_measurements(void)
{
 float frequency, vpp;
 unsigned char vpp_str[16];
 unsigned char freq_str[16];
 int bytes_read;

/*
* Error checking on automatic measurements can be done using one of two methods.
* The first method requires that you turn on results in the Measurements
* subsystem using the command :MEASure:SEND ON. When this is on, the oscilloscope
* will return the measurement and a result indicator. The result flag is zero
* if the measurement was successfully completed, otherwise a non-zero value is
* returned which indicates why the measurement failed.
*
* The second method simply requires that you check the return value of the
* measurement. Any measurement not made successfully will return with the value
* +9.999E37. This could indicate that either the measurement was unable to be
* performed, or that insufficient waveform data was available to make the
* measurement.
*/
/*
* METHOD ONE - turn on results to indicate whether the measurement completed
* successfully. Note that this requires transmission of extra data from the
* oscilloscope.
*/
 write_IO(":MEASure:SENDvalid ON"); /* turn results on */

 /* query volts peak-to-peak channel 1 */
 write_IO(":MEASure:VPP? CHANnel1");

 bytes_read = read_IO(vpp_str,16L); /* read in value and result flag */

 if (vpp_str[bytes_read-2] != '0')
 printf("Automated vpp measurement error with result %c\n",
 vpp_str[bytes_read-2]);
 else
 printf("VPP is %f\n",(float)atof(vpp_str));

6-9

Sample Programs
Sample C Programs

 write_IO(":MEASure:FREQuency? CHANnel1"); /* frequency channel 1 */

 bytes_read = read_IO(freq_str,16L); /* read in value and result flag */

 if (freq_str[bytes_read-2] != '0')
 printf("Automated frequency measurement error with result %c\n",
 freq_str[bytes_read-2]);
 else
 printf("Frequency is %f\n",(float)atof(freq_str));

/*
* METHOD TWO - perform automated measurements and error checking with
* :MEAS:RESULTS OFF
*/
 frequency =(float)0;
 vpp = (float)0;

/* turn off results */
 write_IO(":MEASure:SENDvalid OFF");

 write_IO(":MEASure:FREQuency? CHANnel1"); /* frequency channel 1 */
 bytes_read = read_IO(freq_str,16L); /* read in value and result flag */

 frequency = (float) atof(freq_str);

 if (frequency > 9.99e37)
 printf("\nFrequency could not be measured.\n");
 else
 printf("\nThe frequency of channel 1 is %f Hz.\n", frequency);

 write_IO(":MEASure:VPP? CHANnel1");
 bytes_read = read_IO(vpp_str,16L);

 vpp = (float) atof(vpp_str);

 if (vpp > 9.99e37)
 printf("Peak-to-peak voltage could not be measured.\n");
 else
 printf("The voltage peak-to-peak is %f volts.\n", vpp);

} /* end auto_measurements() */

6-10

Sample Programs
Sample C Programs

init.c - Transferring Data to the PC

/*
* Function name: transfer_data
* Parameters: none
* Return value: none
* Description: This routine transfers the waveform conversion factors and
* waveform data to the PC.
*/

void transfer_data(void)
{
 int header_length;
 char header_str[8];
 FILE *fp;
 int time_division=0;

 char xinc_str[32],xorg_str[32];
 char yinc_str[32],yorg_str[32];

 int bytes_read;

 write_IO(":WAVeform:SOURce CHANnel1"); /* waveform data source channel 1 */
 write_IO(":WAVeform:FORMat BYTE"); /* setup transfer format */

 write_IO(":WAVeform:XINCrement?"); /* request values to allow
 interpretation of raw data */
 bytes_read = read_IO(xinc_str,32L);
 xinc = atof(xinc_str);

 write_IO(":WAVeform:XORigin?");
 bytes_read = read_IO(xorg_str,32L);
 xorg = atof(xorg_str);

 write_IO(":WAVeform:YINCrement?");
 bytes_read = read_IO(yinc_str,32L);
 yinc = atof(yinc_str);

 write_IO(":WAVeform:YORigin?");
 bytes_read = read_IO(yorg_str,32L);
 yorg = atof(yorg_str);

 write_IO(":WAVeform:DATA?"); /* request waveform data */
 bytes_read = read_IO(data,1L); /* fine the # character */
 while(data[0] != '#')
 bytes_read = read_IO(data,1L); /* fine the # character */

6-11

Sample Programs
Sample C Programs

 bytes_read = read_IO(header_str,1L); /* input byte counter */
 header_length = atoi(header_str);

 /* read number of points to download */
 bytes_read = read_IO(header_str,(long)header_length);
 Acquired_length = atoi(header_str); /* number of bytes */

 bytes_read = 0;

 fp = fopen("pairs.csv","wb"); /* open file in binary mode - clear file
 if already exists */

 while((bytes_read + MAX_LENGTH) < Acquired_length)
 {
 bytes_read += read_IO(data,MAX_LENGTH); /* input waveform data */
 /* Convert data to voltage and time */
 time_division = convert_data(time_division,MAX_LENGTH);
 store_csv(fp,MAX_LENGTH); /* Store data to disk */
 }

 /* input last of waveform data */
 bytes_read = read_IO(data,(Acquired_length-bytes_read+1));
 /* Convert data to voltage and time */
 time_division = convert_data(time_division,(bytes_read-1));
 store_csv(fp,(bytes_read-1)); /* Store data to disk */

 fclose(fp); /* close file */

} /* end transfer_data() */

An example header resembles the following when the information is stripped
off:
#510225

The left most “5” defines the number of digits that follow (10225). The number
“10225” is the number of points in the waveform. The information is stripped
off of the header to get the number of data bytes that need to be read from the
oscilloscope.

6-12

Sample Programs
Sample C Programs

init.c - Converting Waveform Data

/*
* Function name: convert_data
* Parameters: int time_division which is the index value of the next time
* value calculated.
* int length number of voltage and time values to calculate.
* Return value: int time_division which contains the next time index.
* Description: This routine converts the waveform data to time/voltage
* information using the values that describe the waveform. These values are
* stored in global arrays for use by other routines.
*/

int convert_data(int time_division, int length)
{
 int i;

 for (i = 0; i < Acquired_length; i++)
 {
 /* calculate time info */
 time_value[i] =(time_division * xinc) + xorg;
 /* calculate volt info */
 volts[i] = (data[i] * yinc) + yorg;
 time_division++;
 }

 return time_division;
} /* end convert_data() */

The data values are returned as digitized samples (sometimes called
quantization levels or q-levels). These data values must be converted into
voltage and time values.

6-13

Sample Programs
Sample C Programs

init.c - Storing Waveform Time and Voltage Information

/*
* Function name: store_csv
* Parameters: none
* Return value: none
* Description: This routine stores the time and voltage information about
* the waveform as time/voltage pairs in a comma-separated variable file
* format.
*/

void store_csv(FILE *fp, int length)
{
 int i;

 if (fp != NULL)
 {
 for (i = 0; i < length; i++)
 {
 /* write time,volt pairs to file */
 fprintf(fp,"%e,%lf\n",time_value[i],volts[i]);
 }
 }
 else
 printf("Unable to open file 'pairs.csv'\n");

} /* end store_csv() */

The time and voltage information of the waveform is stored with the time stored
first, followed by a comma, and the voltage stored second.

6-14

Sample Programs
Sample C Programs

Sample C Program - Generating a Service Request

Segments of the sample C program “gen_srq.c” show how to initialize the
interface and oscilloscope, and generate a service request.

Two include statements start the “gen_srq.c” program. The file “stdio.h” defines
the standard location of the printf routine, and is needed whenever input or
output functions are used. The file “gpibdecl.h” includes necessary prototypes
and declarations for the Infiniium-Series Oscilloscopes sample programs. The
path of these files must specify the disk drive and directory where the “include”
files reside.

/* gen_srq.c */

/*
* This example program initializes the 8000A oscilloscope, runs an autoscale,
* then generates and responds to a Service Request from the oscilloscope. The
* program assumes an 8000A at address 7, an interface card at interface select
* code 7, and a waveform source attached to channel 1.
*/

#include <stdio.h> /* location of: printf() */
#include "gpibdecl.h"

void initialize(void);
void setup_SRQ(void);
void create_SRQ(void);

void main(void)
{
 if(init_IO()) /* initialize interface and device sessions */
 {
 initialize();/* initialize the oscilloscope and interface */
 setup_SRQ(); /* enable SRQs on oscilloscope and set up SRQ handler */
 create_SRQ();/* generate SRQ */
 close_IO(); /* close interface and device sessions */
 }

} /* end main() */

The routine “init_IO” contains three subroutines that initialize the oscilloscope
and interface, and sets up and generate a service request.

The following segment describes the initialize subroutine.

6-15

Sample Programs
Sample C Programs

Initializing the Oscilloscope

The following function is demonstrated in the “gen_srq.c” sample program.
/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the oscilloscope for proper acquisition
* of data. The instrument is reset to a known state and the interface is
* cleared. System headers are turned off to allow faster throughput and
* immediate access to the data values requested by queries. The oscilloscope
* performs an autoscale to acquire waveform data.
*/

void initialize(void)
{
 write_IO("*RST"); /* reset oscilloscope - initialize to known state */
 write_IO("*CLS"); /* clear status registers and output queue */
 write_IO(":SYSTem:HEADer OFF"); /* turn off system headers */
 write_IO(":AUToscale"); /* perform autoscale */

} /* end initialize() */

The *RST command is a common command that resets the oscilloscope to a
known default configuration. Using *RST ensures that the oscilloscope is in a
known state before you configure it. It ensures very consistent and repeatable
results. Without *RST, a program may run one time, but it may give different
results in following runs if the oscilloscope is configured differently.

For example, if the trigger mode is normally set to edge, the program may
function properly. But, if someone puts the oscilloscope in the advanced TV
trigger mode from the front panel, the program may read measurement results
that are totally incorrect. So, *RST defaults the oscilloscope to a set
configuration so that the program can proceed from the same state each time.

The *CLS command clears the status registers and the output queue.

AUToscale finds and displays all waveforms that are attached to the
oscilloscope. You should program the oscilloscope’s time base, channel, and
trigger for the specific measurement to be made, as you would do from the front
panel, and use whatever other commands are needed to configure the
oscilloscope for the desired measurement.

6-16

Sample Programs
Sample C Programs

Setting Up a Service Request

The following code segment shows how to generate a service request. The
following function is demonstrated in the “gen_srq.c” sample program.

/*
* Function name: setup_SRQ
* Parameters: none
* Return value: none
* Description: This routine initializes the device to generate Service Requests.
It
* sets the Service Request Enable Register Event Status Bit and the Standard
* Event Status Enable Register to allow SRQs on Command, Execution, Device
* Dependent, or Query errors.
*/
void setup_SRQ(void)
{
 /* Enable Service Request Enable Register - Event Status Bit */

 write_IO("*SRE 32"); /* Enable Standard Event Status Enable Register */
 /* enable Command Error - bit 4 - value 32 */
 write_IO("*ESE 32");

} /* end setup_SRQ() */

6-17

Sample Programs
Sample C Programs

Generating a Service Request

The following function is demonstrated in the “gen_srq.c” sample program.
/*
* Function name: create_SRQ
* Parameters: none
* Return value: none
* Description: This routine sends two illegal commands to the oscilloscope which
* will generate an SRQ and will place two error strings in the error queue. The
* oscilloscope ID is requested to allow time for the SRQ to be generated. The ID
* string will contain a leading character which is the response placed in
* the output queue by the interrupted query.
*/

void create_SRQ(void)
{
 char buf[256] = { 0 }; // read buffer for id string
 int bytes_read = 0;

#ifdef AGILENT
 // Setup the Agilent interrupt handler
 ionsrq(scope, srq_agilent);
#else
 // Setup the National interrup handler
 ibnotify(scope, RQS, srq_national, NULL);
#endif

 // Generate command error - send illegal header
 write_IO(":CHANnel:DISPlay OFF");

 srq_asserted = TRUE;

 while(srq_asserted)
 {
 // Do nothing until the interrupt has finished
 }

} /* end create_SRQ() */

6-18

Sample Programs
Listings of the Sample Programs

Listings of the Sample Programs

Listings of the C sample programs in this section include:

• gpibdecl.h
• srqagi.c
• learnstr.c
• sicl_IO.c
• natl_IO.c

Listings of the BASIC sample programs in this section include:

• init.bas
• srq.bas
• lrn_str.bas

Read the README File Before Using the Sample Programs

Before using the sample programs, be sure to read the README file on the disk that
contains the sample programs.

6-19

Sample Programs
gpibdecl.h Sample Header

gpibdecl.h Sample Header

/* gpibdecl.h */

/* This file includes necessary prototypes and declarations for the
 example programs for the Agilent 8000A series */

/* User must indicate which GPIB card (Agilent or National) is being used or
 if the LAN interface is being used.
 Also, if using a National card, indicate which version of windows
 (WIN31 or WIN95) is being used */

#define LAN /* Uncomment if using LAN interface */
#define AGILENT /* Uncomment if using LAN or Agilent interface card */
// #define NATL /* Uncomment if using National interface card */

/* #define WIN31 */ /* For National card ONLY - select windows version */
#define WIN95

#ifdef WIN95
 #include <windows.h> /* include file for Windows 95 */
#else
 #include <windecl.h> /* include file for Windows 3.1 */
#endif

#ifdef AGILENT
 #include "d:\siclnt\c\sicl.h" /* Change the path for the sicl.h location */
#else
 #include "decl-32.h"
#endif

#define CME 32
#define EXE 16
#define DDE 8
#define QYE 4

#define SRQ_BIT 64
#define MAX_LRNSTR 40000
#define MAX_LENGTH 262144
#define MAX_INT 4192

#ifdef AGILENT
 #ifdef LAN
 #define INTERFACE "lan[130.29.71.82]:hpib7,7"
 #else

6-20

Sample Programs
gpibdecl.h Sample Header

 #define DEVICE_ADDR "hpib7,7"
 #define INTERFACE "hpib7"
 #endif
#else
 #define INTERFACE "gpib0"

 #define board_index 0
 #define prim_addr 7
 #define second_addr 0
 #define timeout 13
 #define eoi_mode 1
 #define eos_mode 0
#endif

/* GLOBALS */
#ifdef AGILENT
 INST bus;
 INST scope;
#else
 int bus;
 int scope;
#endif

#define TRUE 1
#define FALSE 0

extern int srq_asserted;

/* GPIB prototypes */
void init_IO(void);
void write_IO(char*);
void write_lrnstr(char*, long);
int read_IO(char*, unsigned long);
unsigned char read_status();
void close_IO(void);
void gpiberr(void);

#ifdef AGILENT
 extern void SICLCALLBACK srq_agilent(INST);
#else
 extern int __stdcall srq_national(int, int, int, long, void*);
#endif

6-21

Sample Programs
srqagi.c Sample Program

srqagi.c Sample Program

/* file: srq.c */

/* This file contains the code to handle Service Requests from an GPIB device */

#include <stdio.h> /* location of printf(), fopen(), and fclose() */
#include "gpibdecl.h"

int srq_asserted;

/*
* Function name: srq_agilent
* Parameters: INST which is id of the open interface.
* Return value: none
* Description: This routine services the scope when an SRQ is generated.
* An error file is opened to receive error data from the scope.
*/

void SICLCALLBACK srq_agilent(INST id)
{
 FILE *fp;
 unsigned char statusbyte = 0;
 int i =0;
 int more_errors = 0;
 char error_str[64] ={0};
 int bytes_read;

 srq_asserted = TRUE;

 statusbyte = read_status();

 if (statusbyte & SRQ_BIT)
 {

 fp = fopen("error_list","wb"); /* open error file */

 if (fp == NULL)
 printf("Error file could not be opened.\n");

 /* read error queue until no more errors */

 more_errors = TRUE;

6-22

Sample Programs
srqagi.c Sample Program

 while (more_errors)
 {
 write_IO(":SYSTEM:ERROR? STRING");
 bytes_read = read_IO(error_str, 64L);

 error_str[bytes_read] = '\0’;
 printf("Error string:%s\n", error_str); /* write error msg to std IO */

 if (fp != NULL)
 fprintf(fp,"Error string:%s\n", error_str); /* write error msg to file */

 if (error_str[0] == '0')
 {
 write_IO("*CLS"); /* Clear event registers and queues,
 except output */
 more_errors = FALSE;
 if(fp != NULL)
 fclose(fp);
 }
 } /* end while (more_errors) */
 }
 else
 {
 printf(" SRQ not generated by scope.\n "); /* scope did not cause SRQ */
 }

 srq_asserted = FALSE;

}/* end srq_agilent */

6-23

Sample Programs
learnstr.c Sample Program

learnstr.c Sample Program

/* learnstr.c */

/*
* This example program initializes the 8000A oscilloscope, runs autoscale to
* acquire a waveform, queries for the learnstring, and stores the learnstring
* to disk. It then allows the user to change the setup, then restores the
* original learnstring. It assumes that a waveform is attached to the
* oscilloscope.
*/

#include <stdio.h> /* location of: printf(), fopen(), fclose(),
 fwrite(),getchar */
#include "gpibdecl.h"

void initialize(void);
void store_learnstring(void);
void change_setup(void);
void get_learnstring(void);

void main(void)
{
 if(init_IO()) /* initialize device and interface */
 { /* Note: routine found in sicl_IO.c or natl_IO.c */
 /* initialize the oscilloscope and interface, and set up SRQ */
 initialize();
 store_learnstring(); /* request learnstring and store */
 change_setup(); /* request user to change setup */
 get_learnstring(); /* restore learnstring */
 close_IO(); /* close device and interface sessions */
 /* Note: routine found in sicl_IO.c or natl_IO.c */
 }
} /* end main */

6-24

Sample Programs
learnstr.c Sample Program

/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the oscilloscope for proper
* acquisition of data. The instrument is reset to a known state and the
* interface is cleared. System headers are turned off to allow faster
* throughput and immediate access to the data values requested by queries.
* Autoscale is performed to acquire a waveform. The waveform is then
* digitized, and the channel display is turned on following the acquisition.
*/

void initialize(void)
{
 write_IO("*RST"); /* reset oscilloscope - initialize to known state */
 write_IO("*CLS"); /* clear status registers and output queue */

 write_IO(":SYSTem:HEADer ON"); /* turn on system headers */

 /* initialize Timebase parameters to center reference, 2 ms
 full-scale (200 us/div), and 20 us delay */
 write_IO(":TIMebase:REFerence CENTer;RANGe 5e-3;POSition 20e-6");

 /* initialize Channel1 1.6v full-scale (200 mv/div);
 offset -400mv */
 write_IO(":CHANnel1:RANGe 1.6;OFFSet -400e-3");

 /* initialize trigger info: channel1 waveform on positive slope
 at 300mv */
 write_IO(":TRIGger:EDGE:SOURce CHANnel1;SLOPe POSitive");
 write_IO(":TRIGger:LEVel CHANnel1,-0.40");

 /* initialize acquisition subsystem */
 /* Real time acquisition - no averaging; record length 4096 */
 write_IO(":ACQuire:MODE RTIMe;AVERage OFF;POINts 4096");

} /* end initialize() */

6-25

Sample Programs
learnstr.c Sample Program

/*
* Function name: store_learnstring
* Parameters: none
* Return value: none
* Description: This routine requests the system setup known as a
* learnstring. The learnstring is read from the oscilloscope and stored in a file
* called Learn2.
*/

void store_learnstring(void)
{
 FILE *fp;
 unsigned char setup[MAX_LRNSTR]={0};
 int actualcnt = 0;

 write_IO(":SYSTem:SETup?"); /* request learnstring */
 actualcnt = read_IO(setup, MAX_LRNSTR);

 fp = fopen("learn2","wb");

 if (fp != NULL)
 {
 fwrite(setup,sizeof(unsigned char),(int)actualcnt,fp);
 printf("Learn string stored in file Learn2\n");

 fclose(fp);
 }
 else
 printf("Error in file open\n");

}/* end store_learnstring */

/*
* Function name: change_setup
* Parameters: none
* Return value: none
* Description: This routine places the oscilloscope into local mode to allow the
* customer to change the system setup.
*/

void change_setup(void)
{
 printf("Please adjust setup and press ENTER to continue.\n");
 getchar();

} /* end change_setup */

6-26

Sample Programs
learnstr.c Sample Program

/*
* Function name: get_learnstring
* Parameters: none
* Return value: none
* Description: This routine retrieves the system setup known as a
* learnstring from a disk file called Learn2. It then restores
* the system setup to the oscilloscope.
*/

void get_learnstring(void)
{
 FILE *fp;
 unsigned char setup[MAX_LRNSTR];
 unsigned long count = 0;

 fp = fopen("learn2","rb");

 if (fp != NULL)
 {
 count = fread(setup,sizeof(unsigned char),MAX_LRNSTR,fp);

 fclose(fp);
 }
 write_lrnstr(setup,count); /* send learnstring */
 write_IO(":RUN");

}/* end get_learnstring */

6-27

Sample Programs
sicl_IO.c Sample Program

sicl_IO.c Sample Program

/* sicl_IO.c */

#include <stdio.h> /* location of: printf() */
#include <string.h> /* location of: strlen() */
#include "gpibdecl.h"

/* This file contains IO and initialization routines for the SICL libraries. */
/*
* Function name: init_IO
* Parameters: none
* Return value: int indicating success or failure of initialization.
* Description: This routine initializes the SICL environment. It sets up
* error handling, opens both an interface and device session, sets timeout
* values, clears the interface by pulsing IFC, and clears the instrument
* by performing a Selected Device Clear.
*/

int init_IO()
{
 ionerror(I_ERROR_EXIT); /* set-up interface error handling */

 /* open interface session for verifying SRQ line */
 bus = iopen(INTERFACE);
 if (bus == 0)
 {
 printf("Bus session invalid\n");
 return FALSE;
 }

 itimeout(bus, 20000); /* set bus timeout to 20 sec */
 iclear(bus); /* clear the interface - pulse IFC */

6-28

Sample Programs
sicl_IO.c Sample Program

#ifdef LAN
 scope = bus;
#else
 scope = iopen(DEVICE_ADDR); /* open the scope device session */
 if (scope == 0)
 {
 printf("Scope session invalid\n");
 return FALSE;
 }

 itimeout(scope, 20000); /* set device timeout to 20 sec */
 iclear(scope); /* perform Selected Device Clear on oscilloscope */
#endif

 return TRUE;
} /* end init_IO */

6-29

Sample Programs
sicl_IO.c Sample Program

/*
* Function name: write_IO
* Parameters: char *buffer which is a pointer to the character string to be
* output; unsigned long length which is the length of the string to be output
* Return value: none
* Description: This routine outputs strings to the oscilloscope device session
* using the unformatted I/O SICL commands.
*/

void write_IO(void *buffer)
{
 unsigned long actualcnt;
 unsigned long length;
 int send_end = 1;
 length = strlen(buffer);
 iwrite(scope, buffer, length, send_end, &actualcnt);

} /* end write_IO */

/*
* Function name: write_lrnstr
* Parameters: char *buffer which is a pointer to the character string to be
* output; long length which is the length of the string to be output
* Return value: none
* Description: This routine outputs a learnstring to the oscilloscope device
* session using the unformatted I/O SICL commands.
*/

void write_lrnstr(void *buffer, long length)
{
 unsigned long actualcnt;
 int send_end = 1;

 iwrite(scope, buffer,(unsigned long) length,
 send_end, &actualcnt);

} /* end write_lrnstr() */

6-30

Sample Programs
sicl_IO.c Sample Program

/*
* Function name: read_IO
* Parameters: char *buffer which is a pointer to the character string to be
* input; unsigned long length which indicates the max length of the string to
* be input
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the oscilloscope device session
* using SICL commands.
*/

int read_IO(void *buffer,unsigned long length)
{
 int reason;
 unsigned long actualcnt;

 iread(scope,buffer,length,&reason,&actualcnt);

 return((int) actualcnt);
}

/*
* Function name: check_SRQ
* Parameters: none
* Return value: integer indicating if bus SRQ line was asserted
* Description: This routine checks for the status of SRQ on the bus and
* returns a value to indicate the status.
*/

int check_SRQ(void)
{
 int srq_asserted;

 /* check for SRQ line status */
 igpibbusstatus(bus, I_GPIB_BUS_SRQ, &srq_asserted);

 return(srq_asserted);

} /* end check_SRQ() */

6-31

Sample Programs
sicl_IO.c Sample Program

/*
* Function name: read_status
* Parameters: none
* Return value: unsigned char indicating the value of status byte
* Description: This routine reads the oscilloscope status byte and returns
* the status.
*/

unsigned char read_status(void)
{
 unsigned char statusbyte;

 /* Always read the status byte from instrument */
 /* NOTE: ireadstb uses serial poll to read status byte - this
 should clear bit 6 to allow another SRQ. */

 ireadstb(scope, &statusbyte);
 return(statusbyte);

} /* end read_status() */

/*
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device and interface sessions for the
* SICL environment and calls the routine _siclcleanup which de-allocates
* resources used by the SICL environment.
*/

void close_IO(void)
{
 iclose(scope); /* close device session */
 iclose(bus); /* close interface session */

 _siclcleanup(); /* required for 16-bit applications */

} /* end close_SICL() */

6-32

Sample Programs
natl_IO.c Sample Program

natl_IO.c Sample Program

/* natl_IO.c */

#include <stdio.h> /* location of: printf() */
#include <string.h> /* location of: strlen() */
#include "gpibdecl.h"

/* This file contains IO and initialization routines for the NI488.2 commands. */
/*
* Function name: gpiberr
* Parameters: char* - string describing error
* Return value: none
* Description: This routine outputs error descriptions to an error file.
*/

void gpiberr(char *buffer)
{
 printf("Error string: %s\n",buffer);

} /* end gpiberr() */

/*
* Function name: init_IO
* Parameters: none
* Return value: none
* Description: This routine initializes the NI environment. It sets up error
* handling, opens both an interface and device session, sets timeout values
* clears the interface by pulsing IFC, and clears the instrument by performing
* a Selected Device Clear.
*/

void init_IO(void)
{
 bus = ibfind(INTERFACE); /* open and initialize GPIB board */
 if(ibsta & ERR)
 gpiberr("ibfind error");

 ibconfig(bus, IbcAUTOPOLL, 0); /* turn off autopolling */

 ibsic(bus); /* clear interface - pulse IFC */
 if(ibsta & ERR)
 {
 gpiberr("ibsic error");
 }

6-33

Sample Programs
natl_IO.c Sample Program

 /* open device session */
 scope = ibdev(board_index, prim_addr, second_addr, timeout,
 eoi_mode, eos_mode);
 if(ibsta & ERR)
 {
 gpiberr("ibdev error");
 }

 ibclr(scope); /* clear the device(scope) */

 if(ibsta & ERR)
 {
 gpiberr("ibclr error");
 }

} /* end init_IO */

/*
* Function name: write_IO
* Parameters: void *buffer which is a pointer to the character string
* to be output
* Return value: none
* Description: This routine outputs strings to the oscilloscope device session.
*/
void write_IO(void *buffer)
{
 long length;

 length = strlen(buffer);

 ibwrt(scope, buffer, (long) length);
 if (ibsta & ERR)
 {
 gpiberr("ibwrt error");
 }

} /* end write_IO() */

6-34

Sample Programs
natl_IO.c Sample Program

/*
* Function name: write_lrnstr
* Parameters: void *buffer which is a pointer to the character string to
* be output; length which is the length of the string to be output
* Return value: none
* Description: This routine outputs a learnstring to the oscilloscope device
* session.
*/
void write_lrnstr(void *buffer, long length)
{

 ibwrt(scope, buffer, (long) length);
 if (ibsta & ERR)
 {
 gpiberr("ibwrt error");
 }

} /* end write_lrnstr() */

/*
* Function name: read_IO
* Parameters: char *buffer which is a pointer to the character string to be
* input; unsigned long length which indicates the max length of the string
* to be input
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the oscilloscope device session.
*/

int read_IO(void *buffer,unsigned long length)
{
 ibrd(scope, buffer,(long)length);

 return(ibcntl);

} /* end read_IO() */

6-35

Sample Programs
natl_IO.c Sample Program

/*
* Function name: check_SRQ
* Parameters: none
* Return value: integer indicating if bus SRQ line was asserted
* Description: This routine checks for the status of SRQ on the bus and
* returns a value to indicate the status.
*/

int check_SRQ(void)
{
 int srq_asserted;
 short control_lines = 0;

 iblines(bus, &control_lines);

 if(control_lines & BusSRQ)
 srq_asserted = TRUE;
 else
 srq_asserted = FALSE;

 return(srq_asserted);

} /* end check_SRQ() */

/*
* Function name: read_status
* Parameters: none
* Return value: unsigned char indicating the value of status byte
* Description: This routine reads the oscilloscope status byte and returns
* the status.
*/
unsigned char read_status(void)
{
 unsigned char statusbyte;

 /* Always read the status byte from instrument */

 ibrsp(scope, &statusbyte);

 return(statusbyte);

} /* end read_status() */

6-36

Sample Programs
natl_IO.c Sample Program

/*
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device session.
*/

void close_IO(void)
{
 ibonl(scope,0); /* close device session */

} /* end close_IO() */

6-37

Sample Programs
init.bas Sample Program

init.bas Sample Program

10 !file: init
20 !
30 !
40 ! This program demonstrates the order of commands suggested for
operation of
50 ! the 8000A oscilloscope via GPIB. This program initializes the
oscilloscope, acquires
60 ! data, performs automatic measurements, and transfers and stores the
data on the
70 ! PC as time/voltage pairs in a comma-separated file format useful for
spreadsheet
80 ! applications. It assumes an interface card at interface select code 7, an
90 ! 8000A oscilloscope at address 7, and the 8000A cal waveform connected
to Channel 1.
100 !
110 !
120 !
130 COM /Io/@Scope,@Path,Interface
140 COM /Raw_data/ INTEGER Data(4095)
150 COM /Converted_data/ REAL Time(4095),Volts(4095)
160 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
170 COM /Variables/ INTEGER Record_length
180 !
190 !
200 CALL Initialize
210 CALL Acquire_data
220 CALL Auto_msmts
230 CALL Transfer_data
240 CALL Convert_data
250 CALL Store_csv
260 CALL Close
270 END
280 !

The BASIC programming language can be used to set up and transfer data to your
PC. However, because of the limitations of BASIC, it is not the best language to use
when transferring large amounts of data to your PC.

6-38

Sample Programs
init.bas Sample Program

290
!!!
!!!!!!!!!!!!!
300 !
310 !
320 ! BEGIN SUBPROGRAMS
330 !
340
!!!
!!!!!!!!!!!!!!
350 !
360 !
370 ! Subprogram name: Initialize
380 ! Parameters: none
390 ! Return value: none
400 ! Description: This routine initializes the interface and the
oscilloscope. The instrument
410 ! is reset to a known state and the interface is cleared. System headers
420 ! are turned off to allow faster throughput and immediate access to the
430 ! data values requested by the queries. The oscilloscope time base,
440 ! channel, and trigger subsystems are then configured. Finally, the
450 ! acquisition subsystem is initialized.
460 !
470 !
480 SUB Initialize
490 COM /Io/@Scope,@Path,Interface
500 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
510 COM /Variables/ INTEGER Record_length
520 Interface=7
530 ASSIGN @Scope TO 707
540 RESET Interface
550 CLEAR @Scope
560 OUTPUT @Scope;"*RST"
570 OUTPUT @Scope;"*CLS"
580 OUTPUT @Scope;":SYSTem:HEADer OFF"
590 !Initialize Timebase: center reference, 2 ms full-scale (200 us/div),
 20 us delay
600 OUTPUT @Scope;":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6"
610 ! Initialize Channel1: 1.6V full-scale (200mv/div), -415mv offset
620 OUTPUT @Scope;":CHANnel1:RANGe 1.6;OFFSet -415e-3"
630 !Initialize Trigger: Edge trigger, channel1 source at -415mv
640 OUTPUT @Scope;":TRIGger:EDGE:SOURce CHANnel1;SLOPe POSitive"
650 OUTPUT @Scope;":TRIGger:LEVel CHANnel1,-0.415"
660 ! Initialize acquisition subsystem
665 ! Real time acquisition, Averaging off, memory depth 4096
670 OUTPUT @Scope;":ACQuire:MODE RTIMe;AVERage OFF;POINts 4096"
680 Record_length=4096
690 SUBEND

6-39

Sample Programs
init.bas Sample Program

700 !
710 !
720
!!!
!!!!!!!!!!
730 !
740 !
750 ! Subprogram name: Acquire_data
760 ! Parameters: none
770 ! Return value: none
780 ! Description: This routine acquires data according to the current
instrument
790 ! setting. It uses the root level :DIGitize command.
This command
800 ! is recommended for acquisition of new data because
it will initialize
810 ! the data buffers, acquire new data, and ensure that
acquisition
820 ! criteria are met before acquisition of data is
stopped. The captured
830 ! data is then available for measurements, storage,
or transfer to a
840 ! PC. Note that the display is automatically turned
off by the :DIGitize
850 ! command and must be turned on to view the captured data.
860 !
870 !
880 SUB Acquire_data
890 COM /Io/@Scope,@Path,Interface
900 OUTPUT @Scope;":DIGitize CHANnel1"
910 OUTPUT @Scope;":CHANnel1:DISPlay ON"
920 SUBEND
930 !
940 !
950
!!!
!!!!!!!!!!!!
960 !
970 !
980 ! Subprogram name: Auto_msmts
990 ! Parameters: none
1000 ! Return value: none

1010 ! Description: This routine performs automatic measurements of
volts peak-to-peak
1020 ! and frequency on the acquired data. It also
demonstrates two methods
1030 ! of error detection when using automatic measurements.

6-40

Sample Programs
init.bas Sample Program

1040 !
1050 !
1060 SUB Auto_msmts
1070 COM /Io/@Scope,@Path,Interface
1080 REAL Freq,Vpp
1090 DIM Vpp_str$[64]
1100 DIM Freq_str$[64]
1110 Bytes_read=0
1120 !
1130 ! Error checking on automatic measurements can be done using one of
two methods.
1140 ! The first method requires that you turn on results in the Measurement
subsystem
1150 ! using the command ":MEASure:SEND ON". When this is on, the
oscilloscope will return the
1160 ! measurement and a result indicator. The result flag is zero if
the measurement
1170 ! was successfully completed, otherwise a non-zero value is returned
which indicates
1180 ! why the measurement failed. See the Programmer's Manual for
descriptions of result
1190 ! indicators. The second method simply requires that you check the
return value of
1200 ! the measurement. Any measurement not made successfully will return
with the value
1210 ! +9.999e37. This could indicate that either the measurement was
unable to be
1220 ! performed or that insufficient waveform data was available to make
the measurement.
1230 !
1240 ! METHOD ONE
1250 !
1260 OUTPUT @Scope;":MEASure:SENDvalid ON" !turn on results
1270 OUTPUT @Scope;":MEASure:VPP? CHANnel1" !Query volts peak-to-peak
1280 ENTER @Scope;Vpp_str$
1290 Bytes_read=LEN(Vpp_str$) !Find length of string
1300 CLEAR SCREEN
1310 IF Vpp_str$[Bytes_read;1]="0" THEN !Check result value
1320 PRINT
1330 PRINT "VPP is ";VAL(Vpp_str$[1,Bytes_read-1])
1340 PRINT
1350 ELSE
1360 PRINT
1370 PRINT "Automated vpp measurement error with result
";Vpp_str$[Bytes_read;1]
1380 PRINT
1390 END IF
1400 !

6-41

Sample Programs
init.bas Sample Program

1410 !
1420 OUTPUT @Scope;":MEASure:FREQuency? CHANnel1" !Query frequency
1430 ENTER @Scope;Freq_str$
1440 Bytes_read=LEN(Freq_str$) !Find string length
1450 IF Freq_str$[Bytes_read;1]="0" THEN !Determine result value
1460 PRINT
1470 PRINT "Frequency is ";VAL(Freq_str$[1,Bytes_read-1])
1480 PRINT
1490 ELSE
1500 PRINT
1510 PRINT "Automated frequency measurement error with result
";Freq_str$[Bytes_read;1]
1520 PRINT
1530 END IF
1540 !
1550 !
1560 ! METHOD TWO
1570 !
1580 OUTPUT @Scope;":MEASure:SENDvalid OFF" !turn off results
1590 OUTPUT @Scope;":MEASure:VPP? CHANnel1" !Query volts peak-to-peak
1600 ENTER @Scope;Vpp
1610 IF Vpp<9.99E+37 THEN
1620 PRINT
1630 PRINT "VPP is ";Vpp
1640 PRINT
1650 ELSE
1660 PRINT
1670 PRINT "Automated vpp measurement error ";Vpp
1680 PRINT
1690 END IF
1700 OUTPUT @Scope;":MEASure:FREQuency? CHANnel1"
1710 ENTER @Scope;Freq
1720 IF Freq<9.99E+37 THEN
1730 PRINT
1740 PRINT "Frequency is ";Freq
1750 PRINT
1760 ELSE
1770 PRINT
1780 PRINT "Automated frequency measurement error";Freq
1790 PRINT
1800 END IF
1810 SUBEND
1820 !
1830 !
1840
!!!
!!!!!!!!!
1850 !

6-42

Sample Programs
init.bas Sample Program

1860 !
1870 ! Subprogram name: Transfer_data
1880 ! Parameters: none
1890 ! Return value: none
1900 ! Description: This routine transfers the waveform data and conversion
factors to
1910 ! to PC.
1920 !
1930 !
1940 SUB Transfer_data
1950 COM /Io/@Scope,@Path,Interface
1960 COM /Raw_data/ INTEGER Data(4095)
1970 COM /Converted_data/ REAL Time(4095),Volts(4095)
1980 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
1990 COM /Variables/ INTEGER Record_length
2000 ! define waveform data source and format
2010 OUTPUT @Scope;":WAVeform:SOURce CHANnel1"
2020 OUTPUT @Scope;":WAVeform:FORMat WORD"
2030 ! request values needed to convert raw data to real
2040 OUTPUT @Scope;":WAVeform:XINCrement?"
2050 ENTER @Scope;Xinc
2060 OUTPUT @Scope;":WAVeform:XORigin?"
2070 ENTER @Scope;Xorg
2100 OUTPUT @Scope;":WAVeform:YINCrement?"
2110 ENTER @Scope;Yinc
2120 OUTPUT @Scope;":WAVeform:YORigin?"
2130 ENTER @Scope;Yorg
2160 !
2170 ! request data
2180 OUTPUT @Scope;":WAVeform:DATA?"
2190 ENTER @Scope USING "#,1A";First_chr$!ignore leading #
2200 ENTER @Scope USING "#,1D";Header_length !input number of bytes in
header value
2210 ENTER @Scope USING "#,"&VAL$(Header_length)&"D";Record_length !Record
length in bytes
2220 Record_length=Record_length/2 !Record length in words
2230 ENTER @Scope USING "#,W";Data(*)
2240 ENTER @Scope USING "#,A";Term$!Enter terminating character
2250 !
2260 SUBEND
2270 !
2280 !
2290
!!!
!!!!!!!!!!!
2300 !
2310 !
2320 ! Subprogram name: Convert_data

6-43

Sample Programs
init.bas Sample Program

2330 ! Parameters: none
2340 ! Return value: none
2350 ! Description: This routine converts the waveform data to time/
voltage information
2360 ! using the values Xinc, Xorg, Yinc, and Yorg used to describe
2370 ! the raw waveform data.
2380 !
2390 !
2400 SUB Convert_data
2410 COM /Io/@Scope,@Path,Interface
2420 COM /Raw_data/ INTEGER Data(4095)
2430 COM /Converted_data/ REAL Time(4095),Volts(4095)
2440 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
2450 COM /Variables/ INTEGER Record_length
2460 !
2470 FOR I=0 TO Record_length-1
2480 Time(I)=(I-*Xinc)+Xorg
2490 Volts(I)=(Data(I)*Yinc)+Yorg
2500 NEXT I
2510 SUBEND
2520 !
2530 !
2540
!!!
!!!!!!!!!!!!!
2550 !
2560 !
2570 ! Subprogram name: Store_csv
2580 ! Parameters: none
2590 ! Return value: none
2600 ! Description: This routine stores the time and voltage information
about the waveform
2610 ! as time/voltage pairs in a comma-separated variable
file format.
2620 !
2630 !
2640 SUB Store_csv
2650 COM /Io/@Scope,@Path,Interface
2660 COM /Converted_data/ REAL Time(4095),Volts(4095)
2670 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
2680 COM /Variables/ INTEGER Record_length
2690 !Create a file to store pairs in
2700 ON ERROR GOTO Cont
2710 PURGE "Pairs.csv"
2720 Cont: OFF ERROR
2730 CREATE "Pairs.csv",Max_length
2740 ASSIGN @Path TO "Pairs.csv";FORMAT ON
2750 !Output data to file

6-44

Sample Programs
init.bas Sample Program

2760 FOR I=0 TO Record_length-1
2770 OUTPUT @Path;Time(I),Volts(I)
2780 NEXT I
2790 SUBEND
2800 !
2810 !
2820
!!!
!!!!!!!!!!!!
2830 !
2840 !
2850 ! Subprogram name: Close
2860 ! Parameters: none
2870 ! Return value: none
2880 ! Description: This routine closes the IO paths.
2890 !
2900 !
2910 SUB Close
2920 COM /Io/@Scope,@Path,Interface
2930
2940 RESET Interface
2950 ASSIGN @Path TO *
2960 SUBEND

6-45

Sample Programs
srq.bas Sample Program

srq.bas Sample Program

10 !File: srq.bas
20 !
30 ! This program demonstrates how to set up and check Service Requests from
40 ! the oscilloscope. It assumes an interface select code of 7 with an
oscilloscope at
50 ! address 7. It also assumes a waveform is connected to the oscilloscope.
60 !
70 !
80 COM /Io/@Scope,Interface
90 COM /Variables/Temp
100 CALL Initialize
110 CALL Setup_srq
120 ON INTR Interface CALL Srq_handler !Set up routine to handle interrupt
130 ENABLE INTR Interface;2 !Enable SRQ Interrupt for Interface
140 CALL Create_srq
150 CALL Close
160 END
170 !

The BASIC programming language can be used to set up and transfer data to your
PC. However, because of the limitations of BASIC, it is not the best language to use
when transferring large amounts of data to your PC.

6-46

Sample Programs
srq.bas Sample Program

180
!!!
190 !
200 ! BEGIN SUBPROGRAMS
210 !
220
!!
230 !
240 !
250 ! Subprogram name: Initialize
260 ! Parameters: none
270 ! Return value: none
280 ! Description: This routine initializes the interface and the
oscilloscope.
290 ! The instrument is reset to a known state and the interface is
300 ! cleared. System headers are turned off to allow
faster throughput
310 ! and immediate access to the data values requested by the queries.
320 !
330 !
340 SUB Initialize
350 COM /Io/@Scope,Interface
360 ASSIGN @Scope TO 707
370 Interface=7
380 RESET Interface
390 CLEAR @Scope
400 OUTPUT @Scope;"*RST"
410 OUTPUT @Scope;"*CLS"
420 OUTPUT @Scope;":SYSTem:HEADer OFF"
430 OUTPUT @Scope;":AUToscale"
440 SUBEND
450 !
460 !
470 !

6-47

Sample Programs
srq.bas Sample Program

480
!!!
!!
490 !
500 ! Subprogram name: Setup_srq
510 ! Parameters: none
520 ! Return value: none
530 ! Description: This routine sets up the oscilloscope to generate
Service Requests.
540 ! It sets the Service Request Enable Register Event Status Bit
550 ! and the Standard Event Status Enable REgister to allow SRQs on
560 ! Command or Query errors.
570 !
580 !
590 SUB Setup_srq
600 COM /Io/@Scope,Interface
610 OUTPUT @Scope;"*SRE 32" !Enable Service Request Enable Registers
- Event Status bit
620 !
630 ! Enable Standard Event Status Enable Register:
640 ! enable bit 5 - Command Error - value 32
650 ! bit 2 - Query Error - value 4
660 OUTPUT @Scope;"*ESE 36"
670 SUBEND
680 !
690 !
700 !

6-48

Sample Programs
srq.bas Sample Program

710
!!!
!!!!!
720 !
730 !
740 ! Subprogram name: Create_srq
750 ! Parameters: none
760 ! Return value: none
770 ! Description: This routine will send an illegal command to the
oscilloscope to
780 ! show how to detect and handle an SRQ. A query is sent to
790 ! the oscilloscope which is then followed by another
command causing
800 ! a query interrupt error. An illegal command header is then
810 ! sent to demonstrate how to handle multiple errors in
the error queue.
820 !
830 !
840 !
850 SUB Create_srq
860 COM /Io/@Scope,Interface
870 DIM Buf$[256]
880 OUTPUT @Scope;":CHANnel2:DISPlay?"
890 OUTPUT @Scope;":CHANnel2:DISPlay OFF" !send query interrupt
900 OUTPUT @Scope;":CHANnel:DISPlay OFF" !send illegal header
910 ! Do some stuff to allow time for SRQ to be recognized
920 !
930 OUTPUT @Scope;"*IDN?" !Request IDN to verify communication
940 ENTER @Scope;Buf$!NOTE: There is a leading zero to this
query response
950 PRINT !which represents the response to the
interrupted query above
960 PRINT Buf$
970 PRINT
980 SUBEND
990 !
1000 !
1010 !

6-49

Sample Programs
srq.bas Sample Program

1020
!!!
!!!!!!
1030 !
1040 !
1050 ! Subprogram name: Srq_handler
1060 ! Parameters: none
1070 ! Return value: none
1080 ! Description: This routine verifies the status of the SRQ line. It
then checks
1090 ! the status byte of the oscilloscope to determine if
the oscilloscope caused the
1100 ! SRQ. Note that using a SPOLL to read the status byte
of the oscilloscope
1110 ! clears the SRQ and allows another to be generated.
The error queue
1120 ! is read until all errors have been cleared. All event
registers and
1130 ! queues, except the output queue, are cleared before
control is returned
1140 ! to the main program.
1150 !
1160 !
1170 !
1180 SUB Srq_handler
1190 COM /Io/@Scope,Interface
1200 DIM Error_str$[64]
1210 INTEGER Srq_asserted,More_errors
1220 Status_byte=SPOLL(@Scope)
1230 IF BIT(Status_byte,6) THEN
1240 More_errors=1
1250 WHILE More_errors
1260 OUTPUT @Scope;":SYSTem:ERROR? STRING"
1270 ENTER @Scope;Error_str$
1280 PRINT
1290 PRINT Error_str$
1300 IF Error_str$[1,1]="0" THEN
1310 OUTPUT @Scope;"*CLS"
1320 More_errors=0
1330 END IF
1340 END WHILE
1350 ELSE
1360 PRINT
1370 PRINT "Scope did not cause SRQ"
1380 PRINT
1390 END IF
1400 ENABLE INTR Interface;2 !re-enable SRQ
1410 SUBEND

6-50

Sample Programs
srq.bas Sample Program

1420 !
1430 !
1440
!!!
!!!
1450 !
1460 ! Subprogram name: Close
1470 ! Parameters: none
1480 ! Return value: none
1490 ! Description: This routine resets the interface.
1500 !
1510 !
1520 !
1530 SUB Close
1540 COM /Io/@Scope,Interface
1550
1560 RESET Interface
1570 SUBEND
1580 !
1590 !
1600
!!!
!!!!!

6-51

Sample Programs
lrn_str.bas Sample Program

lrn_str.bas Sample Program

10 !FILE: lrn_str.bas
20 !
30 !THIS PROGRAM WILL INITIALIZE THE OSCILLOSCOPE, AUTOSCALE, AND DIGITIZE
THE WAVEFORM
40 !INFORMATION. IT WILL THEN QUERY THE INSTRUMENT FOR THE LEARNSTRING AND WILL
50 !SAVE THE INFORMATION TO A FILE. THE PROGRAM WILL THEN PROMPT YOU TO CHANGE
60 !THE SETUP THEN RESTORE THE ORIGINAL LEARNSTRING CONFIGURATION. IT ASSUMES
70 !AN 8000A at ADDRESS 7, GPIB INTERFACE at 7, AND THE CAL waveform ATTACHED TO
80 !CHANNEL 1.
90 !
100 !
110 COM /Io/@Scope,@Path,Interface
120 COM /Variables/Max_length
130 CALL Initialize
140 CALL Store_lrnstr
150 CALL Change_setup
160 CALL Get_lrnstr
170 CALL Close
180 END
190 !
200 !
210
!!!
!
220 !
230 ! BEGIN SUBROUTINES
240 !
250
!!!
!
260 ! Subprogram name: Initialize
270 ! Parameters: none
280 ! Return value: none
290 ! Description: This routine initializes the path descriptions and
resets the
300 ! interface and the oscilloscope. It performs an autoscale
on the waveform,

The BASIC programming language can be used to set up and transfer data to your
PC. However, because of the limitations of BASIC, it is not the best language to use
when transferring large amounts of data to your PC.

6-52

Sample Programs
lrn_str.bas Sample Program

310 ! acquires the data on channel 1, and turns on the display.
320 ! NOTE: This routine also turns on system headers. This allows the
330 ! string ":SYSTEM:SETUP " to be returned with the
learnstring so the
340 ! return string is in the proper format.
350 !
360 SUB Initialize
370 COM /Io/@Scope,@Path,Interface
380 COM /Variables/Max_length
390 Max_length=40000
400 ASSIGN @Scope TO 707
410 Interface=7
420 RESET Interface
430 CLEAR @Scope
440 OUTPUT @Scope;"*RST"
450 OUTPUT @Scope;"*CLS"
460 OUTPUT @Scope;":SYSTem:HEADer ON"
470 OUTPUT @Scope;":AUToscale"
480 SUBEND
490 !
500 !
510
!!!
!!!!
520 !
530 !
540 ! Subprogram name: Store_lrnstr
550 ! Parameters: none
560 ! Return value: none
570 ! Description: This routine creates a file in which to store the
learnstring
580 ! configuration (Filename:Lrn_strg). It requests the learnstring
590 ! and inputs the configuration to the PC. Finally, it stores the
600 ! configuration to the file.
610 !
620 SUB Store_lrnstr
630 COM /Io/@Scope,@Path,Interface
640 COM /Variables/Max_length
650 ON ERROR GOTO Cont
660 PURGE "Lrn_strg"
670 Cont: OFF ERROR
680 CREATE BDAT "Lrn_strg",1,40000
690 DIM Setup$[40000]
700 ASSIGN @Path TO "Lrn_strg"
710 OUTPUT @Scope;":SYSTem:SETup?"
720 ENTER @Scope USING "-K";Setup$
730 OUTPUT @Path,1;Setup$
740 CLEAR SCREEN

6-53

Sample Programs
lrn_str.bas Sample Program

750 PRINT "Learn string stored in file: Lrn_strg"
760 SUBEND
770 !
780 !
790
!!!
!!!!!!!!!
800 !
810 ! Subprogram name: Change_setup
820 ! Parameters: none
830 ! Return value: none
840 ! Description: This subprogram requests that the user change the
850 ! oscilloscope setup, then press a key to continue.
860 !
870 !
880 SUB Change_setup
890 COM /Io/@Scope,@Path,Interface
900
910 PRINT
920 PRINT "Please adjust setup and press Continue to resume."
930 PAUSE
940 SUBEND
950 !
960 !
970
!!!
!!!!!!!!!
980 !
990 ! Subprogram name: Get_lrnstr
1000 ! Parameters: none
1010 ! Return value: none
1020 ! Description: This subprogram loads a learnstring from the
1030 ! file "Lrn_strg" to the oscilloscope.
1040 !
1050 !
1060 SUB Get_lrnstr
1070 COM /Io/@Scope,@Path,Interface
1080 COM /Variables/Max_length
1090 DIM Setup$[40000]
1100 ENTER @Path,1;Setup$
1110 OUTPUT @Scope USING "#,-K";Setup$
1120 OUTPUT @Scope;":RUN"
1130 SUBEND
1140 !
1150 !

6-54

Sample Programs
lrn_str.bas Sample Program

1160
!!!
!!!!!
1170 !
1180 !
1190 ! Subprogram name: Close
1200 ! Parameters: none
1210 ! Return value: none
1220 ! Description: This routine resets the interface, and closes all I/
O paths.
1230 !
1240 !
1250 !
1260 SUB Close
1270 COM /Io/@Scope,@Path,Interface
1280
1290 RESET Interface
1300 ASSIGN @Path TO *
1310 SUBEND
1320 !
1330
!!!
!!!

7

Acquire Commands

7-2

Acquire Commands

The ACQuire subsystem commands set up conditions for executing a
:DIGitize root level command to acquire waveform data. The commands
in this subsystem select the type of data, the number of averages, and
the number of data points.

These ACQuire commands and queries are implemented in the Infiniium
Oscilloscopes:

• AVERage
• AVERage:COUNt
• COMPlete
• COMPlete:STATe
• INTerpolate
• MODE
• POINts (memory depth)
• POINts:AUTO
• SEGMented:COUNt
• SEGMented:INDex
• SRATe (sampling rate)
• SRATe:AUTO

7-3

Acquire Commands
AVERage

AVERage

Command :ACQuire:AVERage {{ON|1} | {OFF|0}}

The :ACQuire:AVERage command enables or disables averaging. When ON, the
oscilloscope acquires multiple data values for each time bucket, and averages
them. When OFF, averaging is disabled. To set the number of averages, use
the :ACQuire:AVERage:COUNt command described next.

Averaging is not available in PDETect mode.

The :MTESt:AVERage command performs the same function as this command.

Example This example turns averaging on.
10 OUTPUT 707;":ACQUIRE:AVERAGE ON"
20 END

Query :ACQuire:AVERage?

The :ACQuire:AVERage? query returns the current setting for averaging.

Returned Format [:ACQuire:AVERAGE] {1|0}<NL>

Example This example places the current settings for averaging into the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":ACQUIRE:AVERAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

7-4

Acquire Commands
AVERage:COUNt

AVERage:COUNt

Command :ACQuire:AVERage:COUNt <count_value>

The :ACQuire:AVERage:COUNt command sets the number of averages for the
waveforms. In the AVERage mode, the :ACQuire:AVERage:COUNt command
specifies the number of data values to be averaged for each time bucket before
the acquisition is considered complete for that time bucket.

The :MTESt:AVERage:COUNt command performs the same function as this
command.

<count_value> An integer, 2 to 4096, specifying the number of data values to be averaged.

Example This example specifies that 16 data values must be averaged for each time
bucket to be considered complete. The number of time buckets that must be
complete for the acquisition to be considered complete is specified by the
:ACQuire:COMPlete command.
10 OUTPUT 707;":ACQUIRE:AVERAGE:COUNT 16"
20 END

Query :ACQuire:AVERAGE:COUNt?

The :ACQuire:AVERage:COUNt? query returns the currently selected count
value.

Returned Format [:ACQuire:AVERage:COUNt] <value><NL>

<value> An integer, 2 to 4096, specifying the number of data values to be averaged.

Example This example checks the currently selected count value and places that value
in the string variable, Result$. The program then prints the contents of the
variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:AVERAGE:COUNT?"
30 ENTER 707;Result
40 PRINT Result
50 END

7-5

Acquire Commands
COMPlete

COMPlete

Command :ACQuire:COMPlete <percent>

The :ACQuire:COMPlete command specifies how many of the data point storage
bins (time buckets) in the waveform record must contain a waveform sample
before a measurement will be made. For example, if the command
:ACQuire:COMPlete 60 has been sent, 60% of the storage bins in the waveform
record must contain a waveform data sample before a measurement is made.

• If :ACQuire:AVERage is set to OFF, the oscilloscope only needs one value
per time bucket for that time bucket to be considered full.

• If :ACQuire:AVERage is set to ON, each time bucket must have n hits for it
to be considered full, where n is the value set by :ACQuire:AVERage:COUNt.

Due to the nature of real time acquisition, 100% of the waveform record bins
are filled after each trigger event, and all of the previous data in the record is
replaced by new data when :ACQuire:AVERage is off. Hence, the complete
mode really has no effect, and the behavior of the oscilloscope is the same as
when the completion criteria is set to 100% (this is the same as in PDETect
mode). When :ACQuire:AVERage is on, all of the previous data in the record
is replaced by new data.

The range of the :ACQuire:COMPlete command is 0 to 100 and indicates the
percentage of time buckets that must be full before the acquisition is considered
complete. If the complete value is set to 100%, all time buckets must contain
data for the acquisition to be considered complete. If the complete value is set
to 0, then one acquisition cycle will take place. Completion is set by default
setup or *RST to 90%. Autoscale changes it to 100%.

<percent> An integer, 0 to 100, representing the percentage of storage bins (time buckets)
that must be full before an acquisition is considered complete.

Example This example sets the completion criteria for the next acquisition to 90%.
10 OUTPUT 707;":ACQUIRE:COMPLETE 90"
20 END

7-6

Acquire Commands
COMPlete

Query :ACQuire:COMPlete?

The :ACQuire:COMPlete? query returns the completion criteria.

Returned Format [:ACQuire:COMPlete] <percent><NL>

<percent> An integer, 0 to 100, representing the percentage of time buckets that must be
full before an acquisition is considered complete.

Example This example reads the completion criteria and places the result in the variable,
Percent. Then, it prints the content of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:COMPLETE?"
30 ENTER 707;Percent
40 PRINT Percent
50 END

7-7

Acquire Commands
COMPlete:STATe

COMPlete:STATe

Command :ACQuire:COMPlete:STATe {{ON|1} | OFF|0}}

The :ACQuire:COMPlete:STATe command specifies the state of the
:ACQuire:COMPlete mode. This mode is used to make a tradeoff between how
often equivalent time waveforms are measured, and how much new data is
included in the waveform record when a measurement is made. This command
has no effect when the oscilloscope is in real time mode because the entire
record is filled on every trigger. However, in equivalent time mode, as few as 0
new data points will be placed in the waveform record as the result of any given
trigger event. You set the acquire mode of the oscilloscope by using the
:ACQuire:MODE command.

ON Turns the COMPlete mode on. Then you can specify the completion percent.

OFF When off, the oscilloscope makes measurements on waveforms after each
acquisition cycle, regardless of how complete they are. The waveform record
is not cleared after each measurement. Instead, previous data points will be
replaced by new samples as they are acquired.

Query :ACQuire:COMPlete:STATe?

The :ACQuire:COMPlete? query returns the state of the :ACQuire:COMPlete
mode.

Use :ACQuire:COMPlete:STATe when DIGitize is Not Performing
The :ACQuire:COMPlete:STATe command is used only when the oscilloscope is
operating in equivalent time mode and a digitize operation is not being performed.
The :DIGitize command temporarily overrides the setting of this mode and forces it
to ON.

7-8

Acquire Commands
INTerpolate

INTerpolate

Command :ACQuire:INTerpolate {{ON|1} | {OFF|0}}

The :ACQuire:INTerpolate command turns the sin(x)/x interpolation filter on
or off when the oscilloscope is in one of the real time sampling modes.

Query :ACQuire:INTerpolate?

The :ACQuire:INTerpolate? query returns the current state of the sin(x)/x
interpolation filter control.

Returned Format [:ACQuire:INTerpolate] {1|0}<NL>

7-9

Acquire Commands
MODE

MODE

Command :ACQuire:MODE {RTIMe|{ETIMe|REPetitive}|PDETect|
 HRESolution | SEGMented}

The :ACQuire:MODE command sets the acquisition mode of the oscilloscope.
Sampling mode can be Equivalent Time (Repetitive), Real Time Normal, Real
Time Peak Detect, Segmented, or Real Time High Resolution.

RTIMe In Real Time Normal mode, the complete data record is acquired on a single
trigger event.

ETIMe or
REPetitive

In Equivalent Time (Repetitive) mode, the data record is acquired over multiple
trigger events.

PDETect In Real Time Peak Detect mode, the oscilloscope acquires all of the waveform
data points during one trigger event. The data is acquired at the fastest sample
rate of the oscilloscope regardless of the horizontal scale setting. The sampling
rate control then shows the storage rate into the channel memory rather than
the sampling rate. The storage rate determines the number of data points per
data region. From each data region, four sample points are chosen to be
displayed for each time column. The four sample points chosen from each data
region are:

• the minimum voltage value sample

• the maximum voltage value sample

• a randomly selected sample

• an equally spaced sample

The number of samples per data region is calculated using the equation:

The remainder of the samples are not used for display purposes.

HRESolution In Real Time High Resolution mode, the oscilloscope acquires all the waveform
data points during one trigger event and averages them thus reducing noise and
improving voltage resolution. The data is acquired at the fastest sample rate of
the oscilloscope regardless of the horizontal scale setting. The sampling rate
control then shows the storage rate into the channel memory rather than the
sampling rate. The number of samples that are averaged together per data
region is calculated using the equation

Number of Samples Sampling Rate
Storage Rate

-----------------------------------=

Number of Samples Sampling Rate
Storage Rate

-----------------------------------=

7-10

Acquire Commands
MODE

This number determines how many samples are averaged together to form the
16-bit samples that are stored into the channel memories.

SEGMented In this sampling mode you can view waveform events that are separated by long
periods of time without capturing waveform events that are not of interest to
you.

Example This example sets the acquisition mode to Real Time Normal.
10 OUTPUT 707;":ACQUIRE:MODE RTIME"
20 END

Query :ACQuire:MODE?

The :ACQuire:MODE? query returns the current acquisition sampling mode.

Returned Format [:ACQuire:MODE] {RTIMe | {ETIMe | REPetitive} | PDETect |
HRESolution | SEGMented}<NL>

Example This example places the current acquisition mode in the string variable, Mode$,
then prints the contents of the variable to the computer's screen.
10 DIM Mode$[50]!Dimension variable
20 OUTPUT 707;":ACQUIRE:MODE?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

7-11

Acquire Commands
POINts

POINts

Command :ACQuire:POINts {AUTO|<points_value>}

The :ACQuire:POINts command sets the requested memory depth for an
acquisition. Before you download data from the oscilloscope to your computer,
always query the points value with the :WAVeform:POINts? query or
:WAVeform:PREamble? query to determine the actual number of acquired
points.

You can set the points value to AUTO, which allows Infiniium to select the
optimum memory depth and display update rate.

<points_value> An integer representing the memory depth.

The range of points available for a channel depends on the oscilloscope settings
of Sampling Mode, Sampling Rate, and Trigger Mode.

7-12

Acquire Commands
POINts

Maximum Sampling
Rate for the 8102A
Models

The maximum sampling rate of the oscilloscope depends on the channels that
you are using. If you are using only one channel of channels 1 and 2 and only
one channel of channels 3 and 4 then the oscilloscope is at a maximum sampling
rate of 4 GSa/s. This mode is called Half Channel Mode. Otherwise, the
oscilloscope has a maximum sampling rate of 2 GSa/s. This mode is called Full
Channel Mode. The following tables show the range of point values for the
different oscilloscope modes and model numbers.

Table 7-1

8102A Points Value Ranges for Auto and Triggered Sweep Trigger Modes

Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging

Standard
Half Channel Mode
Full Channel Mode

16 to 512500
16 to 256250

16 to 512500
16 to 256250

16 to 512500
16 to 256250

16 to 512500
16 to 256250

040 Option
Half Channel Mode
Full Channel Mode

16 to 4100000
16 to 2050000

16 to 4100000
16 to 2050000

16 to 4100000
16 to 2050000

16 to 2097152
16 to 1048576

080 Option
Half Channel Mode
Full Channel Mode

16 to 8200000
16 to 4100000

16 to 8200000
16 to 4100000

16 to 8200000
16 to 4100000

16 to 2097152
16 to 1048576

160 Option
Half Channel Mode
Full Channel Mode

16 to 16400000
16 to 8200000

16 to 16400000
16 to 8200000

16 to 16400000
16 to 8200000

2097152
1048576

320 Option
Half Channel Mode
Full Channel Mode

16 to 32800000
16 to 16400000

16 to32800000
16 to 16400000

16 to32800000
16 to 16400000

2097152
1048576

640 Option
Half Channel Mode
Full Channel Mode

16 to 65600000
16 to 32800000

16 to 65600000
16 to 32800000

16 to65600000
16 to 32800000

2097152
1048576

7-13

Acquire Commands
POINts

Table 7-2

8102A Models Points Value Ranges for Single Sweep Trigger Modes

Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging

Standard
Half Channel Mode
Full Channel Mode

16 to 1025000
16 to 512500

16 to 1025000
16 to 512500

16 to 1025000
16 to 512500

16 to 512500
16 to 256250

040 Option
Half Channel Mode
Full Channel Mode

16 to 8200000
16 to 4100000

16 to 8200000
16 to 4100000

16 to 8200000
16 to 4100000

16 to 2097152
16 to 1048576

080 Option
Half Channel Mode
Full Channel Mode

16 to 16400000
16 to 8200000

16 to 16400000
16 to 8200000

16 to 16400000
16 to 8200000

16 to 2097152
16 to 1048576

160 Option
Half Channel Mode
Full Channel Mode

16 to 32800000
16 to 16400000

16 to 32800000
16 to 16400000

16 to 32800000
16 to 16400000

2097152
1048576

320 Option
Half Channel Mode
Full Channel Mode

16 to 65600000
16 to 32800000

16 to 65600000
16 to 32800000

16 to 65600000
16 to 32800000

2097152
1048576

640 Option
Half Channel Mode
Full Channel Mode

16 to 131200000
16 to 65600000

16 to 131200000
16 to 65600000

16 to 131200000
16 to 65600000

2097152
1048576

7-14

Acquire Commands
POINts

Below Maximum
Sampling Rate for
8102A Models

Sampling rates of less than 2 GSa/s for Full Channel Mode and less than
4 GSa/s in Half Channel Mode have point values that are shown in the following
tables.

Table 7-3

8102A Models Points Value Ranges for Auto and Triggered Sweep Trigger Modes

Below Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging

Standard
Half Channel Mode
Full Channel Mode

16 to 512500
16 to 256500

16 to 64062
16 to 64062

16 to 256250
16 to 128125

512500
256250

040 Option
Half Channel Mode
Full Channel Mode

16 to 4100000
16 to 2050000

16 to 512500
16 to 512500

16 to 2050000
16 to 1025000

2097152
1048576

080 Option
Half Channel Mode
Full Channel Mode

16 to 8200000
16 to 4100000

16 to 1025000
16 to 1025000

16 to 4100000
16 to 2050000

2097152
1048576

160 Option
Half Channel Mode
Full Channel Mode

16 to 16400000
16 to 8200000

16 to 2050000
16 to 2050000

16 to 8200000
16 to 4100000

2097152
1048576

320 Option
Half Channel Mode
Full Channel Mode

16 to 32800000
16 to 16400000

16 to 4100000
16 to 4100000

16 to 16400000
16 to 8200000

2097152
1048576

640 Option
Half Channel Mode
Full Channel Mode

16 to 65600000
16 to 32800000

16 to 8200000
16 to 8200000

16 to 32800000
16 to 16400000

2097152
1048576

7-15

Acquire Commands
POINts

Table 7-4

8102A Models Points Value Ranges for Single Sweep Trigger Mode

Below Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging

Standard
Half Channel Mode
Full Channel Mode

16 to 1025000
16 to 1025000

16 to 256250
16 to 256250

16 to 512500
16 to 512500

512500
256250

040 Option
Half Channel Mode
Full Channel Mode

16 to 4100000
16 to 4100000

16 to 1025000
16 to 1025000

16 to 2050000
16 to 2050000

2097152
1048576

080 Option
Half Channel Mode
Full Channel Mode

16 to 8200000
16 to 8200000

16 to 2050000
16 to 2050000

16 to 4100000
16 to 4100000

2097152
1048576

160 Option
Half Channel Mode
Full Channel Mode

16 to 16400000
16 to 16400000

16 to 4100000
16 to 4100000

16 to 8200000
16 to 8200000

2097152
1048576

320 Option
Half Channel Mode
Full Channel Mode

16 to 32800000
16 to 3280000

16 to 8200000
16 to 8200000

16 to 16400000
16 to 16400000

2097152
1048576

640 Option
Half Channel Mode
Full Channel Mode

16 to 65600000
16 to 65600000

16 to 16400000
16 to 16400000

16 to 32800000
16 to 32800000

2097152
1048576

7-16

Acquire Commands
POINts

Maximum Sampling
Rate for all other
Models

The following tables show the points range for all other models of Infiniium
oscilloscopes.

Table 7-5

All Other Models Points Value Ranges for Auto and Triggered Sweep Trigger Modes

Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging

Standard
Half Channel Mode
Full Channel Mode

16 to 2050000
16 to 1025000

16 to 2050000
16 to 1025000

16 to 2050000
16 to 1025000

2097152
1048576

040 Option
Half Channel Mode
Full Channel Mode

16 to 4100000
16 to 2050000

16 to 4100000
16 to 2050000

16 to 4100000
16 to 2050000

2097152
1048576

080 Option
Half Channel Mode
Full Channel Mode

16 to 8200000
16 to 4100000

16 to 8200000
16 to 4100000

16 to 8200000
16 to 4100000

2097152
1048576

160 Option
Half Channel Mode
Full Channel Mode

16 to 16400000
16 to 8200000

16 to 16400000
16 to 8200000

16 to 16400000
16 to 8200000

2097152
1048576

320 Option
Half Channel Mode
Full Channel Mode

16 to 32800000
16 to 16400000

16 to32800000
16 to 16400000

16 to32800000
16 to 16400000

2097152
1048576

640 Option
Half Channel Mode
Full Channel Mode

16 to 65600000
16 to 32800000

16 to 65600000
16 to 32800000

16 to65600000
16 to 32800000

2097152
1048576

7-17

Acquire Commands
POINts

Table 7-6

All Other Models Points Value Ranges for Single Sweep Trigger Modes

Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging

Standard
Half Channel Mode
Full Channel Mode

16 to 4100000
16 to 2050000

16 to 4100000
16 to 2050000

16 to 4100000
16 to 2050000

2097152
1048576

040 Option
Half Channel Mode
Full Channel Mode

16 to 8200000
16 to 4100000

16 to 8200000
16 to 4100000

16 to 8200000
16 to 4100000

2097152
1048576

080 Option
Half Channel Mode
Full Channel Mode

16 to 16400000
16 to 8200000

16 to 16400000
16 to 8200000

16 to 16400000
16 to 8200000

2097152
1048576

160 Option
Half Channel Mode
Full Channel Mode

16 to 32800000
16 to 16400000

16 to 32800000
16 to 16400000

16 to 32800000
16 to 16400000

2097152
1048576

320 Option
Half Channel Mode
Full Channel Mode

16 to 65600000
16 to 32800000

16 to 65600000
16 to 32800000

16 to 65600000
16 to 32800000

2097152
1048576

640 Option
Half Channel Mode
Full Channel Mode

16 to 131200000
16 to 65600000

16 to 131200000
16 to 65600000

16 to 131200000
16 to 65600000

2097152
1048576

7-18

Below Maximum
Sampling Rate for All
Other Models

Sampling rates of less than 2 GSa/s for Full Channel Mode and less than
4 GSa/s in Half Channel Mode have point values that are shown in the following
tables.

Table 7-7

All Other Models Points Value Ranges for Auto and Triggered Sweep Trigger Modes

Below Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging

Standard
Half Channel Mode
Full Channel Mode

16 to 2050000
16 to 1025000

16 to 256250
16 to 256250

16 to 1025000
16 to 512500

2097152
1048576

040 Option
Half Channel Mode
Full Channel Mode

16 to 4100000
16 to 2050000

16 to 512500
16 to 512500

16 to 2050000
16 to 1025000

2097152
1048576

080 Option
Half Channel Mode
Full Channel Mode

16 to 8200000
16 to 4100000

16 to 1025000
16 to 1025000

16 to 4100000
16 to 2050000

2097152
1048576

160 Option
Half Channel Mode
Full Channel Mode

16 to 16400000
16 to 8200000

16 to 2050000
16 to 2050000

16 to 8200000
16 to 4100000

2097152
1048576

320 Option
Half Channel Mode
Full Channel Mode

16 to 32800000
16 to 16400000

16 to 4100000
16 to 4100000

16 to 16400000
16 to 8200000

2097152
1048576

640 Option
Half Channel Mode
Full Channel Mode

16 to 65600000
16 to 32800000

16 to 8200000
16 to 8200000

16 to 32800000
16 to 16400000

2097152
1048576

7-19

Acquire Commands
POINts

Table 7-8

All Other Models Points Value Ranges for Single Sweep Trigger Mode

Equivalent Time
Sampling Mode for All
Models

Equivalent Time Sampling mode takes the oscilloscope out of half channel mode
and the memory depth range is 16 points to 32768 points.

Interaction between :ACQuire:SRATe and :ACQuire:POINts

If you assign a sample rate value with :ACQuire:SRATe or a points value using
:ACQuire:POINts the following interactions will occur. “Manual” means you are
setting a non-AUTO value for SRATe or POINts.

Example This example sets the memory depth to 500 points.
10 OUTPUT 707;":ACQUIRE:POINTS 500"
20 END

Below Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging

Standard
Half Channel Mode
Full Channel Mode

16 to 2050000
16 to 2050000

16 to 512500
16 to 512500

16 to 1025000
16 to 1025000

2097152
1048576

040 Option
Half Channel Mode
Full Channel Mode

16 to 4100000
16 to 4100000

16 to 1025000
16 to 1025000

16 to 2050000
16 to 2050000

2097152
1048576

080 Option
Half Channel Mode
Full Channel Mode

16 to 8200000
16 to 8200000

16 to 2050000
16 to 2050000

16 to 4100000
16 to 4100000

2097152
1048576

160 Option
Half Channel Mode
Full Channel Mode

16 to 16400000
16 to 16400000

16 to 4100000
16 to 4100000

16 to 8200000
16 to 8200000

2097152
1048576

320 Option
Half Channel Mode
Full Channel Mode

16 to 32800000
16 to 3280000

16 to 8200000
16 to 8200000

16 to 16400000
16 to 16400000

2097152
1048576

640 Option
Half Channel Mode
Full Channel Mode

16 to 65600000
16 to 65600000

16 to 16400000
16 to 16400000

16 to 32800000
16 to 32800000

2097152
1048576

SRATe POINts Result

AUTO Manual POINts value takes precedence (sample rate is limited)

Manual AUTO SRATe value takes precedence (memory depth is limited)

Manual Manual SRATe value takes precedence (memory depth is limited)

7-20

Acquire Commands
POINts

Query :ACQuire:POINts?

The :ACQuire:POINts? query returns the value of the memory depth control.

Returned Format [:ACQuire:POINts] <points_value><NL>

Example This example checks the current setting for memory depth and places the result
in the variable, Length. Then the program prints the contents of the variable
to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:POINTS?"
30 ENTER 707;Length
40 PRINT Length
50 END

See Also :WAVeform:DATA?

7-21

Acquire Commands
POINts:AUTO

POINts:AUTO

Command :ACQuire:POINts:AUTO {{ON | 1} |{OFF | 0}}

The :ACQuire:POINts:AUTO command enables (automatic) or disables
(manual) the automatic memory depth selection control. When enabled,
Infiniium chooses a memory depth that optimizes the amount of waveform data
and the display update rate. When disabled, you can select the amount of
memory using the :ACQuire:POINts command.

Example This example sets the automatic memory depth control to off.
10 OUTPUT 707;":ACQUIRE:POINTS:AUTO OFF"
20 END

Query :ACQuire:POINts:AUTO?

The :ACQuire:POINts:AUTO? query returns the automatic memory depth
control state.

Returned Format [:ACQuire:POINts:AUTO] {1 | 0}<NL>

Example This example checks the current setting for automatic memory depth control
and places the result in the variable, State. Then the program prints the
contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:POINTS:AUTO?"
30 ENTER 707;State
40 PRINT State
50 END

See Also :WAVeform:DATA?

7-22

Acquire Commands
SEGMented:COUNt

SEGMented:COUNt

Command :ACQuire:SEGMented:COUNt <#segments>

The :ACQuire:SEGMented:COUNt command sets the number of segments to
acquire in the segmented memory mode.

<#sements> An integer representing the number of segments to acquire.

Example This example sets the segmented memory count control to 1000.
10 OUTPUT 707;":ACQUIRE:SEGMented:COUNt 1000"
20 END

Query :ACQuire:SEGMented:COUNt?

The :ACQuire:SEGMented:COUNT? query returns the number of segments
control value.

Returned Format [:ACQuire:SEGMented:COUNt] <#segments><NL>

Example This example checks the current setting for segmented memory count control
and places the result in the variable, Segments. Then the program prints the
contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:SEGMents:COUNt?"
30 ENTER 707;Segments
40 PRINT Segments
50 END

7-23

Acquire Commands
SEGMented:INDex

SEGMented:INDex

Command :ACQuire:SEGMented:INDex <index#>

The :ACQuire:SEGMented:INDex command sets the index number for the
segment that you want to display on screen in the segmented memory mode.
If an index value larger than the total number of acquired segments is sent, an
error occurs indicating that the data is out of range and the segment index is
set to the maximum segment number.

<index#> An integer representing the index number of the segment that you want to
display.

Example This example sets the segmented memory index number control to 1000.
10 OUTPUT 707;":ACQUIRE:SEGMented:INDex 1000"
20 END

Query :ACQuire:SEGMented:INDex?

The :ACQuire:SEGMented:INDex? query returns the segmented memory index
number control value.

Returned Format [:ACQuire:SEGMented:INDex] <index#><NL>

Example This example checks the current setting for segmented memory index number
control and places the result in the variable, Index. Then the program prints
the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:SEGMents:INDex?"
30 ENTER 707;Index
40 PRINT Index
50 END

7-24

Acquire Commands
SRATe (Sample RATe)

SRATe (Sample RATe)

Command :ACQuire:SRATe {AUTO | MAX | <rate>}

The :ACQuire:SRATe command sets the acquisition sampling rate for real time
and peak detect sampling modes. If the oscilloscope is in the equivalent time
sampling mode, the SRATe command has no effect on the sampling rate.
However, if you change the sampling mode to one of the real time sampling
modes the control will show the new value.

AUTO The AUTO rate allows the oscilloscope to select a sample rate that best
accommodates the selected memory depth and sweep speed.

MAX The MAX rate enables the oscilloscope to select maximum available sample rate.

<rate> A real number representing the sample rate. You can send any value, but the
value is rounded to the next fastest sample rate.

Interaction between :ACQuire:SRATe and :ACQuire:POINts

If you assign a sample rate value with :ACQuire:SRATe or a points value using
:ACQuire:POINts the following interactions will occur. “Manual” means you are
setting a non-AUTO value for SRATe or POINts.

Table 7-9

Available Sample Rate Values (in Sa/s)

Example This example sets the sample rate to 250 MSa/s.
10 OUTPUT 707;":ACQUIRE:SRATE 250E+6"
20 END

SRATe POINts Result

AUTO Manual POINts value takes precedence (sample rate is limited)

Manual AUTO SRATe value takes precedence (memory depth is limited)

Manual Manual SRATe value takes precedence (memory depth is limited)

0.5 1 2 2.5 4 5 10 20 25 40 50 100 200 250 400
500 1k 2k 2.5k 4k 5k 10k 20k 25k 40k 50k 100k 200k 250k 400k
500k 1M 2M 2.5M 4M 5M 10M 20M 25M 40M 50M 100M 125M 200M 250M
500M 1G 2G 4G

7-25

Acquire Commands
SRATe (Sample RATe)

Query :ACQuire:SRATe?

The :ACQuire:SRATe? query returns the current acquisition sample rate.

Returned Format [:ACQuire:SRATe] {AUTO | <rate>}<NL>

Example This example places the current sample rate in the string variable, Sample$,
then prints the contents of the variable to the computer's screen.
10 DIM Sample$[50]!Dimension variable
20 OUTPUT 707;":ACQUIRE:SRATE?"
30 ENTER 707;Sample$
40 PRINT Sample$
50 END

7-26

Acquire Commands
SRATe:AUTO

SRATe:AUTO

Command :ACQuire:SRATe:AUTO {{ON | 1} | {OFF | 0}}

The :ACQuire:SRATe:AUTO command enables or disables the automatic
sampling rate selection control for real time and peak detect sampling modes.
If the oscilloscope is in the equivalent time sampling mode, the AUTO command
has no effect. However, if you change the sampling mode to real time or peak
detect sampling the control will show the new value.

Example This example changes the sampling rate to manual.
10 OUTPUT 707;":ACQUIRE:SRATE:AUTO OFF"
20 END

Query :ACQuire:SRATe:AUTO?

The :ACQuire:SRATe:AUTO? query returns the current acquisition sample rate.

Returned Format [:ACQuire:SRATe:AUTO] {1 | 0}<NL>

Example This example places the current sample rate in the variable, Sample, then prints
the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:SRATE:AUTO?"
30 ENTER 707;Sample
40 PRINT Sample
50 END

8

Bus Commands

8-2

Bus Commands

The :BUS modes and commands described in this chapter include:

• BIT<M>

• BITS

• CLEar

• DISPlay

• LABel

The BUS commands only apply to the MSO Oscilloscopes.

8-3

Bus Commands
BIT<M>

BIT<M>

Command :BUS<N>:BIT<M> {ON | OFF | 1 | 0}

The :BUS<N>:BIT<M> command includes or excludes the selected bit as part
of the definition for the selected bus. If the parameter is a 1 (ON) then the bit
is included in the definition. If the parameter is a 0 (OFF) then the bit is
excluded from the definition. The digital subsystem must be enabled for this
command will work. See ENABle command in the root subsystem.

<M> An integer, 0 - 15.

<N> An integer, 1 - 2.

Example This example includes bit 1 as part of the bus 1 definition.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”BUS1:BIT1 ON”
30 END

Query :BUS<N>:BIT<M>?

The :BUS<N>:BIT<M>? query returns the value indicating whether the
specified bit is included or excluded from the specified bus definition.

Return format [:BUS<N>:BIT<M>] {1 | 0}<NL>

The BUS commands only apply to the MSO Oscilloscopes.

8-4

Bus Commands
BITS

BITS

Command :BUS<N>:BITS <channel_list>,{ON | OFF| 1 | 0}

The :BUS<N>:BITS command includes or excludes the selected bits in the
channel list in the definition of the selected bus. If the parameter is a 1 (ON)
then the bits in the channel list are included as part of the selected bus
definition. If the parameter is a 0 (OFF) then the bits in the channel list are
excluded from the definition of the selected bus. The digital subsystem must
be enabled for this command will work. See ENABle command in the root
subsystem.

<N> An integer, 1 - 2.

<channel_list> The channel range is from 0 to 15 in the following format.

Example This example includes bits 1, 2, 4, 5, 6, 7, 8, and 9 as part of the bus 1 definition.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”BUS1:BITS (@1,2,4:9),ON”
30 END

Query :BUS<N>:BITS?

The :BUS<N>:BITS? query returns the definition for the specified bus.

Return format [:BUS<N>:BITS] <channel_list>,{1 | 0}<NL>

The BUS commands only apply to the MSO Oscilloscopes.

(@1,5,7,9) channels 1, 5, 7, and 9 are turned on.

(@1:15) channels 1 through 15 are turned on.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14 are turned on.

The parenthesizes are part of the expression and are necessary.

8-5

Bus Commands
CLEar

CLEar

Command BUS<N>:CLEar

The :BUS<N>:CLEar command excludes all of the digital channels from the
selected bus definition.

<N> An integer, 1 - 2.

Example This example excludes all the digital channels from the bus 1 definition.
10 Output 707;”BUS1:CLEAR”
20 END

The BUS commands only apply to the MSO Oscilloscopes.

8-6

Bus Commands
DISPlay

DISPlay

Command :BUS<N>[:DISPlay] {ON | OFF | 1 | 0}

The :BUS<N>:DISPlay command enables or disables the view of the selected
bus. The digital subsystem must be enabled before this command will work.
See the ENABle command in the root subsystem.

<N> An integer, 1 - 2.

Example This example enables the viewing of bus 1.
10 Output 707;:ENABLE DIGITAL”
20 Output 707;”BUS1 ON”
30 END

Query :BUS<N>[:DISPlay]?

The :BUS<N>[:DISPlay]? query returns the display value of the selected bus.

Returned Format [:BUS<N>] {1 | 0}<NL>

The BUS commands only apply to the MSO Oscilloscopes.

8-7

Bus Commands
LABel

LABel

Command :BUS<N>:LABel <quoted_string>

The :BUS<N>:LABel command sets the bus label to the quoted string. Setting
a label for a bus will also result in the name being added to the label list.

<N> An integer, 1 - 2.

<quoted_string> A series of 6 or less characters as a quoted ASCII string.

Example This example sets the bus 1 label to Data.
10 Output 707;”BUS1:LABEL ““Data”””
20 END

Query :BUS<N>:LABel?

The :BUS<N>:LABel? query returns the name of the specified bus.

Return format [:BUS<N>:LABel] <quoted_string><NL>

The BUS commands only apply to the MSO Oscilloscopes.

Label strings are 16 characters or less, and may contain any commonly used ASCII
characters. Labels with more than 16 characters are truncated to 16 characters.

8-8

9

Calibration Commands

9-2

Calibration Commands

This chapter briefly explains the calibration of the oscilloscope. It is
intended to give you and the calibration lab personnel an understanding
of the calibration procedure and how the calibration subsystem is
intended to be used.

9-3

Calibration Commands
Oscilloscope Calibration

Oscilloscope Calibration

Oscilloscope calibration establishes calibration factors for the oscilloscope.
These factors are stored on the oscilloscope's hard disk.

• Initiate the calibration from the “Utilities Calibration” menu.
You should calibrate the oscilloscope periodically (at least annually), or if the
ambient temperature since the last calibration has changed more than ±10 °C.
The temperature change since the last calibration is shown on the calibration
status screen which is found under the “Utilities Calibration” dialog. It is the
line labeled “Calibration ∆ Temp: _ °C.”

To perform the oscilloscope calibration, you need a BNC-to-BNC cable such as
the 8120-1840 cable. When you initiate the calibration, instructions appear on
the screen describing how to perform the calibration.

See Also The Oscilloscope’s Service Guide has more details about the calibration.

9-4

Calibration Commands
Probe Calibration

Probe Calibration

Probe calibration establishes the gain and offset of a probe that is connected to
a channel of the oscilloscope, and applies these factors to the calibration of that
channel.

• Initiate probe calibration from the “Utilities Calibration” menu.
To achieve the specified accuracy (±2%) with a probe connected to a channel,
make sure the oscilloscope is calibrated.

• For active probes that the oscilloscope can identify through the probe power
connector, like the 1158A, the oscilloscope automatically adjusts the vertical
scale factors for that channel even if a probe calibration is not performed.

• For passive probes or nonidentified probes, the oscilloscope adjusts the
vertical scale factors only if a probe calibration is performed.

• If you do not perform a probe calibration but want to use a passive
probe, enter the attenuation factor in the Probe Cal dialog under the
Channel dialog.
• If the probe being calibrated has an attenuation factor that allows the

oscilloscope to adjust the gain (in hardware) to produce even steps in the
vertical scale factors, the oscilloscope will do so.

• If the probe being calibrated has an unusual attenuation, like 3.75, the
oscilloscope may have to adjust the vertical scale factors to an unusual
number, like 3.75 V/div.

Typically, probes have standard attenuation factors such as divide by 10, divide
by 20, or divide by 100.

9-5

Calibration Commands

The commands in the CALibration subsystem allow you to change the
output of the front-panel Aux Out connector, adjust the skew of the
channels, and check the status of the calibration. These CALibration
commands and queries are implemented in the Infiniium Oscilloscopes:

• OUTPut
• SKEW
• STATus?

9-6

Calibration Commands
OUTPut

OUTPut

Command :CALibrate:OUTPut {{AC|TRIGOUT} | {DC,<dc_value>}}

The :CALibrate:OUTPut command sets the coupling frequency, trigger output
pulse, and dc level of the calibrator waveform output through the front-panel
Aux Out connector. To trigger other instruments, use the TRIGOUT setting to
cause the oscilloscope to send a pulse when the trigger event occurs.

<dc_value> A real number for the DC level value in volts, adjustable from -2.4 V to +2.4 V DC.

Example This example puts a DC voltage of 2.0 volts on the oscilloscope front-panel Aux
Out connector.
10 OUTPUT 707;":CALIBRATE:OUTPUT DC,2.0"
20 END

Query :CALibrate:OUTPut?

The :CALibrate:OUTPut? query returns the current setup.

Returned Format [:CALibrate:OUTPut] {{AC|TRIGOUT} | {DC,<dc_value>}}

Example This example places the current selection for the DC calibration to be printed
in the string variable, Selection$, then prints the contents of the variable to the
computer's screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":CALIBRATE:OUTPUT?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

9-7

Calibration Commands
SKEW

SKEW

Command :CALibrate:SKEW {CHANnel<N> | EXTernal},<skew_value>

The :CALibrate:SKEW command sets the channel-to-channel skew factor for a
channel. The numeric argument is a real number in seconds, which is added to
the current time base position to shift the position of the channel’s data in time.
Use this command to compensate for differences in the electrical lengths of
input paths due to cabling and probes.

<N> An integer, 1 - 2, for two channel oscilloscopes Infiniium Oscilloscope models.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<skew_value> A real number, in seconds.

Example This example sets the oscilloscope channel 1 skew to 0.1 s.
10 OUTPUT 707;":CALIBRATE:SKEW CHANNEL1,0.1"
20 END

Query :CALibrate:SKEW? {CHANnel<N>|EXTernal}

The :CALibrate:SKEW? query returns the current skew value.

Returned Format [:CALibrate:SKEW] <skew_value><NL>

9-8

Calibration Commands
STATus?

STATus?

Query :CALibrate:STATus?

The :CALibrate:STATus? query returns the calibration status of the
oscilloscope. These are ten, comma-separated integers, with 1, 0, or -1. A "1"
indicates pass, a "0" indicates fail and a "-1" indicates unused. This matches the
status in the Calibration dialog box in the Utilities menu.

Returned Format [:CALibrate:STATus] <status>

<status> <Frame Status>,
<Channel1 Vertical>, <Channel1 Trigger>,
<Channel2 Vertical>, <Channel2 Trigger>,
<Channel3 Vertical>, <Channel3 Trigger>, (-1 for two channel oscilloscopes)
<Channel4 Vertical>, <Channel4 Trigger>, (-1 for two channel oscilloscopes)
<Aux Trigger> (<Ext Trigger> for two channel oscilloscopes)

10

Channel Commands

10-2

Channel Commands

The CHANnel subsystem commands control all vertical (Y axis)
functions of the oscilloscope. You may toggle the channel displays on
and off with the root level commands :VIEW and :BLANk, or with
:CHANnel:DISPlay.

These CHANnel commands and queries are implemented:

• BWLimit
• DISPlay
• INPut
• OFFSet
• PROBe
• PROBe:ATTenuation (only for the 1154A probe)
• PROBe:EADapter (only for the 1153A, 1154A, and 1159A probes)
• PROBe:ECoupling (only for the 1153A, 1154A, and 1159A probes)
• PROBe:EXTernal
• PROBe:EXTernal:GAIN
• PROBe:EXTernal:OFFSet
• PROBe:EXTernal:UNITs
• PROBe:GAIN (only for the 1154A probe)
• PROBe:ID?
• PROBe:SKEW
• PROBe:STYPe (only for 113xA series, 1168A, and 1169A probes)
• RANGe
• SCALe
• UNITs

10-3

Channel Commands
BWLimit

BWLimit

Command :CHANnel<N>:BWLimit {{ON|1} | {OFF|0}}

The :CHANnel<N>:BWLimit command controls the low-pass filter.

When ON, the bandwidth of the specified channel is limited. The bandwidth
limit filter can be used with either AC or DC coupling.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example sets the internal low-pass filter to "ON" for channel 1.
10 OUTPUT 707;":CHANNEL1:BWLIMIT ON"
20 END

Query :CHANnel<N>:BWLimit?

The :CHANnel<N>:BWLimit? query returns the state of the low-pass filter for
the specified channel.

Returned Format [:CHANnel<N>:BWLimit] {1|0}<NL>

Example This example places the current setting of the low-pass filter in the variable
Limit, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:BWLIMIT?"
30 ENTER 707;Limit
40 PRINT Limit
50 END

10-4

Channel Commands
DISPlay

DISPlay

Command :CHANnel<N>:DISPlay {{ON|1} | {OFF|0}}

The :CHANnel<N>:DISPlay command turns the display of the specified channel
on or off.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example sets channel 1 display to on.
10 OUTPUT 707;"CHANNEL1:DISPLAY ON"
20 END

Query :CHANnel<N>:DISPlay?

The :CHANnel<N>:DISPlay? query returns the current display condition for the
specified channel.

Returned Format [:CHANnel<N>:DISPlay] {1|0}<NL>

Example This example places the current setting of the channel 1 display in the variable
Display, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DISPLAY?"
30 ENTER 707;Display
40 PRINT Display
50 END

10-5

Channel Commands
INPut

INPut

Command :CHANnel<N>:INPut <parameter>

The :CHANnel<N>:INPut command selects the input coupling, impedance, and
LF/HF reject for the specified channel. The coupling for each channel can be
AC, DC, DC50, or DCFifty when no probe is attached. If you have an 1153A
probe attached, the valid parameters are DC, LFR1, and LFR2 (low-frequency
reject).

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<parameter> The parameters available in this command for Infiniium are.

• DC: DC coupling, 1 MΩ input impedance

• DC50 | DCFifty: DC coupling, 50Ω input impedance

• AC: AC 1 MΩ input impedance

• LFR1 | LFR2: AC 1 MΩ input impedance

Example This example sets the channel 1 input to DC50.
10 OUTPUT 707;":CHANNEL1:INPut DC50"
20 END

Query :CHANnel<N>:INPut?

The :CHANnel<N>:INPut? query returns the selected channel input parameter.

Returned Format [CHANnel<N>:INPut]<parameter><NL>

Example This example puts the current input for channel 1 in the string variable, Input$.
The program then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:INPUT?
30 ENTER 707;Input$
40 PRINT Input$
50 END

10-6

Channel Commands
OFFSet

OFFSet

Command :CHANnel<N>:OFFSet <offset_value>

The :CHANnel<N>:OFFSet command sets the voltage that is represented at the
center of the display for the selected channel. Offset parameters are probe and
vertical scale dependent.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<offset _value> A real number for the offset value at center screen. Usually expressed in volts,
but can be in other measurement units, such as amperes, if you have specified
other units using the :CHANnel<N>:UNITs command.

Example This example sets the offset for channel 1 to 0.125 in the current measurement
units:
10 OUTPUT 707;":CHANNEL1:OFFSET 125E-3"
20 END

Query :CHANnel<N>:OFFSet?

The :CHANnel<N>:OFFSet? query returns the current offset value for the
specified channel.

Returned Format [CHANnel<N>:OFFSet] <offset_value><NL>

Example This example places the offset value of the specified channel in the string
variable, Offset$, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;"CHANNEL1:OFFSET?"
30 ENTER 707;Offset
40 PRINT Offset
50 END

10-7

Channel Commands
PROBe

PROBe

Command :CHANnel<N>:PROBe <attenuation_factor>[,{RATio |
DECibel}]

The :CHANnel<N>:PROBe command sets the probe attenuation factor and,
optionally, the units for the probe attenuation factor. The range of the probe
attenuation factor is from 0.0001 to 1,000 and from −80 dB to 60 dB.
The reference factors that are used for scaling the display are changed with this
command, and affect automatic measurements and trigger levels.

The “,DEC” or “,RAT” also sets the “mode” for the probe attenuation. This mode
also determines the units that may be used for a subsequent command. For
example, if you select RATio mode, then the attenuation factor must be given
in . In “DECibel” mode, you can specify the units for the argument as “dB”.

<N> An integer, 1-2, for two channel Infiniium Oscilloscope.
An integer, 1-4, for all other Infiniium Oscilloscope models.

<attenuation
_factor>

A real number from 0.0001 to 1,000 for the RATio attenuation units or from −
80 dB to 60 dB for the DECibel attenuation units.

Example This example sets the probe attenuation factor for a 10:1 probe on channel 1 in
ratio mode.
10 OUTPUT 707;":CHANNEL1:PROBE 10,RAT"
20 END

10-8

Channel Commands
PROBe

Query :CHANnel<N>:PROBe?

The :CHANnel<N>:PROBe? query returns the current probe attenuation
setting for the selected channel and the units.

Returned Format [:CHANnel<N>:PROBe] <attenuation>,{RATio | DECibel}<NL>

Example This example places the current attenuation setting for channel 1 in the string
variable, Atten$, then the program prints the contents.
10 DIM Atten$[50]!Dimension variable
20 OUTPUT 707;":CHANNEL1:PROBE?
30 ENTER 707;Atten$
40 PRINT Atten$
50 END

If you use a string variable, the query returns the attenuation value and the
factor (decibel or ratio). If you use an integer variable, the query returns the
attenuation value. You must then read the attenuation units into a string
variable.

10-9

Channel Commands
PROBe:ATTenuation

PROBe:ATTenuation

Command :CHANnel<N>:PROBe:ATTenuation {DIV1 | DIV10}

The :CHANnel<N>:PROBe:ATTenuation command sets the probe’s
attenuation. The 1154A probe has the ability to change the probe’s input
amplifier’s attenuation.

This command is only available when an Infiniium 1154A probe is connected to
a channel. If the 1154A probe is not connected to a channel you will get a
settings conflict error.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example sets the probe attenuation for channel 1 to divide by 10.
10 OUTPUT 707;":CHANNEL1:PROBE:ATTENUATION DIV10"
20 END

Query :CHANnel<N>:PROBe:ATTenuation?

The :CHANnel<N>:PROBe:ATTenuation? query returns the current probe
attenuation setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:ATTenuation] {DIV1 | DIV10}<NL>

10-10

Channel Commands
PROBe:EADapter

PROBe:EADapter

Command :CHANnel<N>:PROBe:EADapter {NONE | DIV10 |
DIV20 | DIV100}

The :CHANnel<N>:PROBe:EADapter command sets the Infiniium external
adapter control. The 1153A, 1154A, and 1159A are probes that have external
adapters that you can attach to the end of the probe. When you attach one of
these adapters, you should use the EADapter command to set the external
adapter control to match the adapter connected to your probe as follows.

This command is only available when an 1153A, 1154A, or 1159A probe is
connected to a channel. If one of these probes is not connected to the channel
you will get a settings conflict error.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example sets the external adapter for channel 1 to divide by 10:
10 OUTPUT 707;":CHANNEL1:PROBE:EADAPTER DIV10"
20 END

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

DIV10 Use this setting when you have a divide by
10 adapter connected to the end of your
probe.

DIV20 Use this setting when you have a divide by
20 adapter connected to the end of your
probe. (1159A only)

DIV100 Use this setting when you have a divide by
100 adapter connected to the end of your
probe. (1153A only)

10-11

Channel Commands
PROBe:EADapter

Query :CHANnel<N>:PROBe:EADapter?

The :CHANnel<N>:PROBe:EADapter? query returns the current external
adapter value for the specified channel.

Returned Format [CHANnel<N>:PROBe:EDApter] {NONE | DIV10 | DIV20 |
DIV100}<NL>

Example This example places the external adapter value of the specified channel in the
string variable, Adapter$, then prints the contents of the variable to the
computer's screen.
10 DIM Adapter$[50]!Dimension variable
20 OUTPUT 707;":CHANNEL1:PROBE:EADAPTER?
30 ENTER 707;Adapter$
40 PRINT Adapter$
50 END

10-12

Channel Commands
PROBe:ECoupling

PROBe:ECoupling

Command :CHANnel<N>:PROBe:ECoupling {NONE | AC}

The :CHANnel<N>:PROBe:ECoupling command sets the Infiniium external
coupling adapter control. The 1153A, 1154A, and 1159A probes have external
coupling adapters that you can attach to the end of the probe. When you attach
one of these adapters, you should use the ECoupling command to set the
external coupling adapter control to match the adapter connected to your probe
as follows.

This command is only available when an 1153A, 1154A, or 1159A probe is
connected to a channel. If one of these probes is not connected to the channel
you will get a settings conflict error.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example sets the external coupling adapter for channel 1 to ac:
10 OUTPUT 707;":CHANNEL1:PROBE:ECOUPLING AC"
20 END

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

AC Use this setting when you have an ac
coupling adapter connected to the end of
your probe.

10-13

Channel Commands
PROBe:ECoupling

Query :CHANnel<N>:PROBe:ECoupling?

The :CHANnel<N>:PROBe:ECoupling? query returns the current external
adapter coupling value for the specified channel.

Returned Format [CHANnel<N>:PROBe:ECoupling] {NONE | AC}<NL>

Example This example places the external coupling adapter value of the specified
channel in the string variable, Adapter$, then prints the contents of the variable
to the computer's screen.
10 DIM Adapter$[50]!Dimension variable
20 OUTPUT 707;":CHANNEL1:PROBE:ECOUPLING?
30 ENTER 707;Adapter$
40 PRINT Adapter$
50 END

10-14

Channel Commands
PROBe:EXTernal

PROBe:EXTernal

rmmand :CHANnel<N>:PROBe:EXTernal {{ON|1} | {OFF|0}}

The :CHANnel<N>:PROBe:EXTernal command sets the external probe mode
to on or off.

<N> An integer, 1 - 4

Example This example sets channel 1 external probe mode to on.
10 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL ON"
20 END

Query :CHANnel<N>:PROBe:EXTernal?

The :CHANnel<N>:PROBe:EXTernal? query returns the current external probe
mode for the specified channel.

Returned Format [:CHANnel<N>:PROBe:EXTernal] {1|0}<NL>

Example This example places the current setting of the external probe mode on channel
1 in the variable Mode, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL?"
30 ENTER 707;Mode
40 PRINT Mode
50 END

10-15

Channel Commands
PROBe:EXTernal:GAIN

PROBe:EXTernal:GAIN

Command :CHANnel<N>:PROBe:EXTernal:GAIN
<gain_factor>[,{RATio | DECibel}]

The :CHANnel<N>:PROBe:EXTernal:GAIN command sets the probe external
scaling gain factor and, optionally, the units for the probe gain factor. The
reference factors that are used for scaling the display are changed with this
command, and affect automatic measurements and trigger levels.

The RATio or DECibel also sets the mode for the probe attenuation and also
determines the units that may be used for a subsequent command. For example,
if you select RATio mode, then the attenuation factor must be given in ratio gain
units. In DECibel mode, you can specify the units for the argument as “dB”.

<N> An integer, 1 - 4

<gain_factor> A real number from 0.001 to 10000 for the RATio gain units, or from −60 dB to
80 dB for the DECibel gain units.

Example This example sets the probe external scaling gain factor for channel 1 to 10.
10 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL ON"
20 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL:GAIN 10,RATIO"
30 END

CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing this
command or query or this command will have no effect.

10-16

Channel Commands
PROBe:EXTernal:GAIN

Query :CHANnel<N>:PROBe:EXTernal:GAIN?

The :CHANnel<N>:PROBe:EXTernal:GAIN? query returns the probe external
gain setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:EXTernal:GAIN] <gain_factor><NL>

Example This example places the external gain value of the probe on the specified
channel in the variable, Gain, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL ON"
20 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL:GAIN?"
30 ENTER 707;Gain
40 PRINT Gain
50 END

10-17

Channel Commands
PROBe:EXTernal:OFFSet

PROBe:EXTernal:OFFSet

Command :CHANnel<N>:PROBe:EXTernal:OFFSet <offset_value>

The :CHANnel<N>:PROBe:EXTernal:OFFSet command sets the external
vertical value for the probe that is represented at the center of the display for
the selected channel. Offset parameters are probe and vertical scale dependent.

When using the 113xA, series probes, the CHANnel<N>:PROBe:STYPe
command determines how the offset is applied. When
CHANnel<N>:PROBe:STYPe SINGle is selected, the
:CHANnel<N>:PROBe:EXTernal:OFFset command changes the offset value of
the probe amplifier. When CHANnel<N>:PROBe:STYPe DIFFerential is
selected, the :CHANnel<N>:PROBe:EXTernal:OFFSet command changes the
offset value of the channel amplifier.

<N> An integer, 1 - 4

<offset_value> A real number for the offset value at center screen. Usually expressed in volts,
but can be in other measurement units, such as amperes, if you have specified
other units using the :CHANnel<N>:PROBe:EXTernal:UNITs command.

Example This example sets the external offset for the probe on channel 1 to 0.125 in the
current measurement units:
10 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL ON"
20 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL:OFFSET 125E-3"
30 END

CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing this
command or query or this command will have no effect.

10-18

Channel Commands
PROBe:EXTernal:OFFSet

Query :CHANnel<N>:EXTernal:PROBe:OFFSet?

The :CHANnel<N>:PROBe:EXTernal:OFFSet? query returns the current
external offset value for the probe on the specified channel.

Returned Format [CHANnel<N>:PROBe:EXTernal:OFFSet] <offset_value><NL>

Example This example places the external offset value of the probe on the specified
channel in the variable, Offset, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL ON"
30 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL:OFFSET?"
40 ENTER 707;Offset
50 PRINT Offset
60 END

10-19

Channel Commands
PROBe:EXTernal:UNITs

PROBe:EXTernal:UNITs

Command :CHANnel<N>:PROBe:EXTernal:UNITs {VOLT | AMPere |
WATT | UNKNown}

The :CHANnel<N>:PROBe:EXTernal:UNITs command sets the probe external
vertical units on the specified channel. You can specify Y-axis units of VOLTs,
AMPs, WATTs, or UNKNown. The units are implied for other pertinent channel
probe external commands and channel commands (such as
:CHANnel<N>:PROBe:EXTernal:OFFSet and :CHANnel<N>:RANGe). See the
Probe Setup dialog box for more information.

<N> An integer, 1 - 4

Example This example sets the external units for the probe on channel 1 to amperes.
10 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL ON"
20 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL:UNITS AMPERE"
30 END

CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing this
command or query or this command will have no effect. UNITs can also be set using
the CHANnel<N>:UNITs command.

10-20

Channel Commands
PROBe:EXTernal:UNITs

Query :CHANnel<N>:PROBe:EXTernal:UNITs?

The :CHANnel<N>:PROBe:EXTernal:UNITs? query returns the current
external units setting for the probe on the specified channel.

Returned Format [:CHANnel<N>:PROBe:EXTernal:UNITs] {VOLT | AMPere | WATT |
UNKNown}<NL>

Example This example places the external vertical units for the probe on the specified
channel in the string variable, Units$, then prints the contents of the variable
to the computer's screen.
10 DIM Units$[50]
20 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL ON"
30 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL:UNITS?"
40 ENTER 707;Units$
50 PRINT Units$
60 END

10-21

Channel Commands
PROBe:GAIN

PROBe:GAIN

Command :CHANnel<N>:PROBe:GAIN {X1 | X10}

The :CHANnel<N>:PROBe:GAIN command sets the probe gain. The 1154A
probe has the ability to change the probe’s input amplifier gain.

The units of volts, amperes, watts, and unknown are set using the
:CHANnel<N>:UNITs command.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example sets the probe gain for channel 1 to times 10.
10 OUTPUT 707;":CHANNEL1:PROBE:GAIN X10"
20 END

Query :CHANnel<N>:PROBe:GAIN?

The :CHANnel<N>:PROBe:GAIN? query returns the current probe gain setting
for the selected channel.

Returned Format [:CHANnel<N>:PROBe:GAIN] {X1 | X10}<NL>

This command is only available when 1154A probe is connected to a channel. If one
of these probes is not connected to the channel you will get a settings conflict error.

10-22

Channel Commands
PROBe:ID?

PROBe:ID?

Query :CHANnel<N>:PROBe:ID?

The :CHANnel<N>:PROBe:ID? query returns the type of probe attached to the
specified oscilloscope channel.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Returned Format [:CHANnel<N>:PROBe:ID] <probe_id>

<probe_id> A string of up to 9 alphanumeric characters. Some of the possible returned
values are:

• 1131A

• 1132A

• 1134A

• 1147A

• 1153A

• 1154A

• 1156A

• 1157A

• 1158A

• 1159A

• AutoProbe

• E2621A

• E2622A

• E2695A

• E2697A

• HP1152A

• HP1153A

• NONE

• Probe

• Unknown

10-23

Channel Commands
PROBe:ID?

Example This example reports the probe type connected to channel 1, if one is
connected.
10 OUTPUT 707;":CHANNEL1:PROBE:ID?"
20 END

10-24

Channel Commands
PROBe:SKEW

PROBe:SKEW

Command :CHANnel<N>:PROBe:SKEW <skew_value>

The :CHANnel<N>:PROBe:SKEW command sets the channel-to-channel skew
factor for the specified channel. You can use the oscilloscope's probe skew
control to remove timing differences between probes or cables on different
channels.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<skew_value> A real number for the skew value, in the range -100 µs to 100 µs.

Example This example sets the probe skew for channel 1 to 10 µs.
10 OUTPUT 707;":CHANNEL1:PROBE:SKEW 10E-6"
20 END

Query :CHANnel<N>:PROBe:SKEW?

The :CHANnel<N>:PROBe:SKEW? query returns the current probe skew
setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:SKEW] <skew_value><NL>

10-25

Channel Commands
PROBe:STYPe

PROBe:STYPe

Command :CHANnel<N>:PROBe:STYPe {DIFFerential | SINGle}

The :CHANnel<N>:PROBe:STYPe command sets the channel probe signal type
(STYPe) to differential or single-ended when using the 113xA series, 1168A,
and 1169A probes and determines how offset is applied.

When single-ended is selected, the :CHANnel<N>:PROBe:EXTernal:OFFset
command changes the offset value of the probe amplifier. When differential is
selected, the :CHANnel<N>:PROBe:EXTernal:OFFset command changes the
offset value of the channel amplifier.

<N> An integer, 1 - 4

Example This example sets the probe mode to single-ended..
10 OUTPUT 707;":CHANNEL1:PROBE:STYPE SINGLE"
20 END

Query :CHANnel<N>:PROBe:STYPe?

The :CHANnel<N>:PROBe:STYPe? query returns the current probe mode
setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:STYPe] {DIFFerential | SINGle}<NL>

This command is valid only for the 113xA series, 168A, and 1169A probes.

10-26

Channel Commands
RANGe

RANGe

Command :CHANnel<N>:RANGe <range_value>

The :CHANnel<N>:RANGe command defines the full-scale vertical axis of the
selected channel. It sets up acquisition and display hardware to display the
waveform at a given range scale. The values represent the full-scale deflection
factor of the vertical axis in volts. These values change as the probe attenuation
factor is changed.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<range_value> A real number for the full-scale voltage of the specified channel number.

Example This example sets the full-scale range for channel 1 to 500 mV.
10 OUTPUT 707;":CHANNEL1:RANGE 500E-3"
20 END

Query :CHANnel<N>:RANGe?

The :CHANnel<N>:RANGe? query returns the current full-scale vertical axis
setting for the selected channel.

Returned Format [:CHANnel<N>:RANGe]<range_value><NL>

Example This example places the current range value in the number variable, Setting,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”!Response headers off
20 OUTPUT 707;":CHANNEL1:RANGE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

10-27

Channel Commands
SCALe

SCALe

Command :CHANnel<N>:SCALe <scale_value>

The :CHANnel<N>:SCALe command sets the vertical scale, or units per
division, of the selected channel. This command is the same as the front-panel
channel scale.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<scale_value> A real number for the vertical scale of the channel in units per division.

Example This example sets the scale value for channel 1 to 500 mV/div.
10 OUTPUT 707;":CHANNEL1:SCALE 500E-3"
20 END

Query :CHANnel<N>:SCALe?

The :CHANnel<N>:SCALe? query returns the current scale setting for the
specified channel.

Returned Format [:CHANnel<N>:SCALe] <scale_value><NL>

Example This example places the current scale value in the number variable, Setting,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":CHANNEL1:SCALE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

10-28

Channel Commands
UNITs

UNITs

Command :CHANnel<N>:UNITs {VOLT | AMPere | WATT | UNKNown}

The :CHANnel<N>:UNITs command sets the vertical units. You can specify
Y-axis units of VOLTs, AMPs, WATTs, or UNKNown. The units are implied for
other pertinent channel commands (such as :CHANnel<N>:RANGe and
:CHANnel<N>:OFFSet). See the Probe Setup dialog box for more information.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example sets the units for channel 1 to amperes.
10 OUTPUT 707;":CHANNEL1:UNITS AMPERE"
20 END

Query :CHANnel<N>:UNITs?

The :CHANnel<N>:UNITs? query returns the current units setting for the
specified channel.

Returned Format [:CHANnel<N>:UNITs] {VOLT | AMPere | WATT | UNKNown}<NL>

Example This example places the vertical units for the specified channel in the string
variable, Units$, then prints the contents of the variable to the computer's
screen.
10 DIM Units$[50]
20 OUTPUT 707;"CHANNEL1:UNITS?"
30 ENTER 707;Units$
40 PRINT Units$
50 END

11

Common Commands

11-2

Common Commands

Common commands are defined by the IEEE 488.2 standard. They
control generic device functions that are common to many different
types of instruments. Common commands can be received and
processed by the oscilloscope, whether they are sent over the GPIB as
separate program messages or within other program messages.

These common commands and queries are implemented in the Infiniium
Oscilloscopes:

• *CLS (Clear Status)
• *ESE (Event Status Enable)
• *ESR? (Event Status Register)
• *IDN? (Identification Number)
• *LRN? (Learn)
• *OPC (Operation Complete)
• *OPT? (Option)
• *PSC (Power-on Status Clear)
• *RCL (Recall)
• *RST (Reset)
• *SAV (Save)
• *SRE (Service Request Enable)
• *STB? (Status Byte)
• *TRG (Trigger)
• *TST? (Test)
• *WAI (Wait-to-Continue)

11-3

Common Commands

Receiving Common Commands

Common commands can be received and processed by the oscilloscope,
whether they are sent over the GPIB as separate program messages or
within other program messages. If a subsystem is currently selected and
a common command is received by the oscilloscope, the oscilloscope
remains in the selected subsystem. For example, if the program message

"ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

is received by the oscilloscope, the oscilloscope sets the acquire type,
clears the status information, then sets the number of averages without
leaving the selected subsystem.

Status Registers

The following two status registers used by common commands have an
enable (mask) register. By setting bits in the enable register, you can
select the status information for use. Refer to the chapter, “Status
Reporting,” for a complete discussion of status.

Table 11-1 Status and Enable Registers

Headers and Common Commands.

Headers are not prepended to common commands.

Status Register Enable Register

Event Status Register Event Status Enable Register

Status Byte Register Service Request Enable Register

11-4

Common Commands
*CLS (Clear Status)

 *CLS (Clear Status)

Command *CLS

The *CLS command clears all status and error registers.

Example This example clears the status data structures of the oscilloscope.
10 OUTPUT 707;"*CLS"
20 END

See Also Refer to the “Status Reporting” chapter for a complete discussion of status.

11-5

Common Commands
*ESE (Event Status Enable)

*ESE (Event Status Enable)

Command *ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.

<mask> An integer, 0 to 255, representing a mask value for the bits to be enabled in the
Standard Event Status Register as shown in Table 11-2.

Example This example enables the User Request (URQ) bit of the Standard Event Status
Enable Register. When this bit is enabled and a front-panel key is pressed, the
Event Summary bit (ESB) in the Status Byte Register is also set.
10 OUTPUT 707;"*ESE 64"
20 END

Query *ESE?

The *ESE? query returns the current contents of the Standard Event Status
Enable Register.

Returned Format <mask><NL>

<mask> An integer, +0 to +255 (the plus sign is also returned), representing a mask
value for the bits enabled in the Standard Event Status Register as shown in
Table 11-2.

Example This example places the current contents of the Standard Event Status Enable
Register in the numeric variable, Event. The value of the variable is printed on
the computer's screen.
10 OUTPUT 707;"*ESE?"
20 ENTER 707;Event
30 PRINT Event
40 END

11-6

Common Commands
*ESE (Event Status Enable)

The Standard Event Status Enable Register contains a mask value for the bits
to be enabled in the Standard Event Status Register. A "1" in the Standard Event
Status Enable Register enables the corresponding bit in the Standard Event
Status Register. A "0" in the enable register disables the corresponding bit.

Table 11-2 Standard Event Status Enable Register Bits

See Also Refer to the chapter, “Status Reporting,” for a complete discussion of status.

Bit Weight Enables Definition

7 128 PON - Power On Indicates power is turned on.

6 64 Not Used.
Permanently set to zero.

5 32 CME - Command Error Indicates whether the parser detected an
error.

4 16 EXE - Execution Error Indicates whether a parameter was out of
range, or was inconsistent with the current
settings.

3 8 DDE - Device Dependent Error Indicates whether the device was unable to
complete an operation for device-
dependent reasons.

2 4 QYE - Query Error Indicates if the protocol for queries has been
violated.

1 2 RQC - Request Control Indicates whether the device is requesting
control.

0 1 OPC - Operation Complete Indicates whether the device has completed
all pending operations.

11-7

Common Commands
*ESR? (Event Status Register)

*ESR? (Event Status Register)

Query *ESR?

The *ESR? query returns the contents of the Standard Event Status Register.
Reading this register clears the Standard Event Status Register, as does a *CLS.

Returned Format <status><NL>

<status> An integer, 0 to 255, representing the total bit weights of all bits that are high
at the time you read the register.

Example This example places the current contents of the Standard Event Status Register
in the numeric variable, Event, then prints the value of the variable to the
computer's screen.

10 OUTPUT 707;"*ESR?"
20 ENTER 707;Event
30 PRINT Event
40 END

Table 11-3 lists each bit in the Event Status Register and the corresponding bit
weights.

11-8

Common Commands
*ESR? (Event Status Register)

Table 11-3 Standard Event Status Register Bits

Bit Bit Weight Bit Name Condition

7 128 PON 1 = OFF to ON transition has occurred.

6 64 Not Used. Permanently set to zero.

5 32 CME 0 = no command errors.
1 = a command error has been detected.

4 16 EXE 0 = no execution error.
1 = an execution error has been detected.

3 8 DDE 0 = no device-dependent errors.
1 = a device-dependent error has been detected.

2 4 QYE 0 = no query errors.
1 = a query error has been detected.

1 2 RQC 0 = request control - NOT used - always 0.

0 1 OPC 0 = operation is not complete.
1 = operation is complete.

0 = False = Low 1 = True = High

11-9

Common Commands
*IDN? (Identification Number)

*IDN? (Identification Number)

Query *IDN?

The *IDN? query returns the company name, oscilloscope model number, serial
number, and software version by returning this string:

Agilent Technologies,<Model #>,<USXXXXXXXX>,<Rev #>

<Model #> Specifies the model number of the oscilloscope.

<USXXXXXXXX> Specifies the serial number of the oscilloscope. The first four digits and letter
are the serial prefix, which is the same for all identical oscilloscopes. The last
five digits are the serial suffix, which is assigned sequentially, and is different
for each oscilloscope.

<Rev #> Specifies the software version of the oscilloscope, and is the revision number.

<Options> Comma separated list of the installed options.

Returned Format Agilent Technologies,DSO8104A,USXXXXXXXX,A.XX.XX

Example This example places the oscilloscope's identification information in the string
variable, Identify$, then prints the identification information to the computer's
screen.

10 DIM Identify$[50]!dimension variable
20 OUTPUT 707;"*IDN?"
30 ENTER 707;Identify$
40 PRINT Identify$
50 END

11-10

Common Commands
*LRN? (Learn)

*LRN? (Learn)

Query *LRN?

The *LRN? query returns a string that contains the oscilloscope's current setup.
You can store the oscilloscope's setup and send it back to the oscilloscope at a
later time. This setup string should be sent to the oscilloscope just as it is. It
works because of its embedded ":SYSTem:SETup" header.

Returned Format :SYSTem:SETup <setup><NL>

<setup> This is a definite-length, arbitrary block response specifying the current
oscilloscope setup. The block size is subject to change with different firmware
revisions.

Example This example sets the oscilloscope’s address and asks for the learn string, then
determines the string length according to the IEEE 488.2 block specification.
It then reads the string and the last EOF character.

10 ! Set up the oscilloscope’s address and
20 ! ask for the learn string...
30 ASSIGN @Scope TO 707
40 OUTPUT @Scope:"*LRN?"
50 !
60 ! Search for the # sign.
70 !
80 Find_pound_sign: !
90 ENTER @Scope USING "#,A";Thischar$
100 IF Thischar$<>"#" THEN Find_pound_sign
110 !
120 ! Determine the string length according
130 ! to the IEEE 488.2 # block spec.
140 ! Read the string then the last EOF char.
150 !
160 ENTER @Scope USING "#,D";Digit_count
170 ENTER @Scope USING
"#,"&VAL$(Digit_count)&"D";Stringlength
180 ALLOCATE Learn_string$[Stringlength+1]
190 ENTER @Scope USING "-K";Learn_string$
200 OUTPUT 707;":syst:err?"
210 ENTER 707;Errornum
220 PRINT "Error Status=";Errornum

11-11

Common Commands
*LRN? (Learn)

See Also :SYSTem:SETup command and query. When HEADers and LONGform are ON,
the :SYSTem:SETup command performs the same function as the *LRN? query.
Otherwise, *LRN and SETup are not interchangeable.

*LRN? Returns Prefix to Setup Block

The *LRN query always returns :SYSTem:SETup as a prefix to the setup block.
The :SYSTem:HEADer command has no effect on this response.

11-12

Common Commands
*OPC (Operation Complete)

*OPC (Operation Complete)

Command *OPC

The *OPC command sets the operation complete bit in the Standard Event
Status Register when all pending device operations have finished.

Example This example sets the operation complete bit in the Standard Event Status
Register when the DIGitize operation is complete.

10 OUTPUT 707;":DIGITIZE CHANNEL1;*OPC"
20 END

Query *OPC?

The *OPC? query places an ASCII character “1” in the oscilloscope's output
queue when all pending selected device operations have finished.

Returned Format 1<NL>

Example This example places an ASCII character “1” in the oscilloscope's output queue
when the AUToscale operation is complete. Then the value in the output queue
is placed in the numeric variable “Complete.”

10 OUTPUT 707;":AUTOSCALE;*OPC?"
20 ENTER 707;Complete
30 PRINT Complete
40 END

The *OPC? query allows synchronization between the computer and the
oscilloscope by using the message available (MAV) bit in the Status Byte, or by
reading the output queue. Unlike the *OPC command, the *OPC query does
not affect the OPC Event bit in the Standard Event Status Register.

11-13

Common Commands
*OPT? (Option)

*OPT? (Option)

Query *OPT?

The *OPT? query returns a string with a list of installed options. If no options
are installed, the string will have a 0 as the first character.

The length of the returned string may increase as options become available in
the future. Once implemented, an option name will be appended to the end of
the returned string, delimited by a comma.

Returned Format [001,002,640,320,160,080,040,EZP,CLK,EZJ,SDA,LSS,EBW,NRD,
ERC]<NL>

See on-line help system in the Help/About dialog box for the
installed options list.

Example This example places all options into the string variable, Options$, then prints
the option name to the computer's screen.
10 DIM Options$[100]
20 OUTPUT 707;"*OPT?"
30 ENTER 707;Options$
40 PRINT Options$
50 END

11-14

Common Commands
*PSC (Power-on Status Clear)

*PSC (Power-on Status Clear)

Command *PSC {{ON|1} | {OFF|0}}

The *PSC command determines whether or not the SRQ line is set upon the
completion of the oscilloscope’s boot process. When the *PSC flag is set to 1,
the Power On (PON) bit of the Standard Event Status Register is 0 during the
boot process. When the *PSC flag is set to 0, the PON bit is set to a 1 during
the boot process.

When the *PSC flag is set to 0, the Standard Event Status Enable Register must
be set to 128 decimal and the Service Request Enable Register must be set to
32 decimal. This allows the Power On (PON) bit to set the SRQ line when the
oscilloscope is ready to receive commands.

Example This example sets the *PSC flag to 0 which sets the SRQ line during the boot
process.
10 OUTPUT 707;”*PSC 0;*SRE 32;*ESE 128”
20 END

Query The *PSC? query returns the value of the *PSC flag.

Returned Format 1<NL>

Example This example places the *PSC flag into the integer variable Pscflag.
10 OUTPUT 707;”*PSC?”
20 ENTER 707;Pscflag
30 PRINT Pscflag
40 END

If you are using a LAN interface rather than a GPIB interface, it is not possible to
receive the SRQ during the boot process.

11-15

Common Commands
*RCL (Recall)

*RCL (Recall)

Command *RCL <register>

The *RCL command restores the state of the oscilloscope to a setup previously
stored in the specified save/recall register. An oscilloscope setup must have
been stored previously in the specified register. Registers 0 through 9 are
general-purpose registers and can be used by the *RCL command.

<register> An integer, 0 through 9, specifying the save/recall register that contains the
oscilloscope setup you want to recall.

Example This example restores the oscilloscope to the oscilloscope setup stored in
register 3.

10 OUTPUT 707;"*RCL 3"
20 END

See Also *SAV (Save). An error message appears on the oscilloscope’s display if nothing
has been previously saved in the specified register.

11-16

Common Commands
*RST (Reset)

*RST (Reset)

Command *RST

The *RST command places the oscilloscope in a known state.

Default setup does change the :SYSTem:HEADer or the :SYSTem:LONGform
settings but does change the completion criteria (:ACQuire:COMPlete) to 90%.

Example This example resets the oscilloscope to a known state.

10 OUTPUT 707;"*RST"
20 END

The default values for all of the Infiniium controls is located in the Infiniium Help
System under Default Setup.

11-17

Common Commands
*SAV (Save)

*SAV (Save)

Command *SAV <register>

The *SAV command stores the current state of the oscilloscope in a save
register.

<register> An integer, 0 through 9, specifying the register used to save the current
oscilloscope setup.

Example This example stores the current oscilloscope setup to register 3.

10 OUTPUT 707;"*SAV 3"
20 END

See Also *RCL (Recall).

11-18

Common Commands
*SRE (Service Request Enable)

*SRE (Service Request Enable)

Command *SRE <mask>

The *SRE command sets the Service Request Enable Register bits. By setting
the *SRE, when the event happens, you have enabled the oscilloscope’s
interrupt capability. The oscilloscope will then do an SRQ (service request),
which is an interrupt.

<mask> An integer, 0 to 255, representing a mask value for the bits to be enabled in the
Service Request Enable Register as shown in Table 11-4.

Example This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MAV bit is high.

10 OUTPUT 707;"*SRE 16"
20 END

Query *SRE?

The *SRE? query returns the current contents of the Service Request Enable
Register.

Returned Format <mask><NL>

<mask> An integer, 0 to 255, representing a mask value for the bits enabled in the Service
Request Enable Register.

Example This example places the current contents of the Service Request Enable
Register in the numeric variable, Value, then prints the value of the variable to
the computer's screen.

10 OUTPUT 707;"*SRE?"
20 ENTER 707;Value
30 PRINT Value
40 END

11-19

Common Commands
*SRE (Service Request Enable)

The Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A “1” in the Service Request Enable
Register enables the corresponding bit in the Status Byte Register. A “0”
disables the bit.

Table 11-4 Service Request Enable Register Bits

Bit Weight Enables

7 128 OPER - Operation Status Register

6 64 Not Used

5 32 ESB - Event Status Bit

4 16 MAV - Message Available

3 8 Not Used

2 4 MSG - Message

1 2 USR - User Event Register

0 1 TRG - Trigger

11-20

Common Commands
*STB? (Status Byte)

*STB? (Status Byte)

Query *STB?

The *STB? query returns the current contents of the Status Byte, including the
Master Summary Status (MSS) bit. See Table 11-5 for Status Byte Register bit
definitions.

Returned Format <value><NL>

<value> An integer, 0 to 255, representing a mask value for the bits enabled in the Status
Byte.

Example This example reads the contents of the Status Byte into the numeric variable,
Value, then prints the value of the variable to the computer's screen.

10 OUTPUT 707;"*STB?"
20 ENTER 707;Value
30 PRINT Value
40 END

In response to a serial poll (SPOLL), Request Service (RQS) is reported on
bit 6 of the status byte. Otherwise, the Master Summary Status bit (MSS) is
reported on bit 6. MSS is the inclusive OR of the bitwise combination, excluding
bit 6, of the Status Byte Register and the Service Request Enable Register. The
MSS message indicates that the oscilloscope is requesting service (SRQ).

11-21

Common Commands
*STB? (Status Byte)

Table 11-5 Status Byte Register Bits

Bit Bit Weight Bit Name Condition

7 128 OPER 0 = no enabled operation status conditions have occurred
1 = an enabled operation status condition has occurred

6 64 RQS/MSS 0 = oscilloscope has no reason for service
1 = oscilloscope is requesting service

5 32 ESB 0 = no event status conditions have occurred
1 = an enabled event status condition has occurred

4 16 MAV 0 = no output messages are ready
1 = an output message is ready

3 8 --- 0 = not used

2 4 MSG 0 = no message has been displayed
1 = message has been displayed

1 2 USR 0 = no enabled user event conditions have occurred
1 = an enabled user event condition has occurred

0 1 TRG 0 = no trigger has occurred
1 = a trigger occurred

0 = False = Low 1 = True = High

11-22

Common Commands
*TRG (Trigger)

*TRG (Trigger)

Command *TRG

The *TRG command has the same effect as the Group Execute Trigger message
(GET) or RUN command. It acquires data for the active waveform display, if
the trigger conditions are met, according to the current settings.

Example This example starts the data acquisition for the active waveform display
according to the current settings.

10 OUTPUT 707;"*TRG"
20 END

Trigger Conditions Must Be Met

When you send the *TRG command in Single trigger mode, the trigger conditions
must be met before the oscilloscope will acquire data.

11-23

Common Commands
*TST? (Test)

*TST? (Test)

Query *TST?

The *TST? query causes the oscilloscope to perform a self-test, and places a
response in the output queue indicating whether or not the self-test completed
without any detected errors. Use the :SYSTem:ERRor command to check for
errors. A zero indicates that the test passed and a non-zero indicates the self-
test failed.

Returned Format <result><NL>

<result> 0 for pass; non-zero for fail.

Example This example performs a self-test on the oscilloscope and places the results in
the numeric variable, Results. The program then prints the results to the
computer's screen.

10 OUTPUT 707;"*TST?"
20 ENTER 707;Results
30 PRINT Results
40 END

If a test fails, refer to the troubleshooting section of the service guide.

The self-test takes approximately 3 minutes to complete. When using timeouts
in your program, a 200-second duration is recommended.

Disconnect Inputs First

You must disconnect all front-panel inputs before sending the *TST? command.

Expanded Error Reporting

The :SELFtest:SCOPETEST command has expanded error reporting. Instead of using
*TST?, Agilent recommends that you use the :SELFtest:SCOPETEST command. In
either case, be sure you disconnect all front-panel inputs before sending the *TST?
command.

11-24

Common Commands
*WAI (Wait)

*WAI (Wait)

Command *WAI

The *WAI command has no function in the oscilloscope, but is parsed for
compatibility with other instruments.

Example Output 707;”*WAI”

12

Digital Commands

12-2

Digital Commands

The :DIGital modes and commands described in this chapter include:

• DISPlay

• LABel

• SIZE

• THReshold

The DIGital commands only apply to the MSO Oscilloscopes.

12-3

Digital Commands
DISPlay

DISPlay

Command :DIGital<N>[:DISPlay] {ON | OFF | 1 | 0}

The :DIGital<N>:DISPlay command enables or disables the view for the selected
digital channel. The digital subsystem must be enabled before this command
will work. See ENABle command in the root subsystem.

<N> An integer, 0 - 15.

Example This example turns on the display of bit 5 for the digital channels.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”DIGITAL5:DISPLAY ON”
30 END

Query :DIGital<N>[:DISPlay]?

The :DIGital<N>:DISPlay? query returns the value of the display setting for the
selected digital channel.

Returned Format [:DIGital<N>:DISPlay] {1 | 0}<NL>

The DIGital commands only apply to the MSO Oscilloscopes.

12-4

Digital Commands
LABel

LABel

Command :DIGital<N>:LABel <quoted_string>

The :DIGital<N>:LABel command sets the digital channel label to the quoted
string. Setting a label for a digital channel will also result in the name being
added to the label list.

<N> An integer, 1 - 2.

<quoted_string> A series of 6 or less characters as a quoted ASCII string.

Example This example sets the label for bit 7 to Clock.
10 Output 707;”:DIGital7:LABel ““Clock”””
20 END

Query :DIGital<N>:LABel?

The :DIGital<N>:LABel? query returns the name of the specified digital
channel.

Return format [:DIGital<N>:LABel] <quoted_string><NL>

The DIGital commands only apply to the MSO Oscilloscopes.

Label strings are 16 characters or less, and may contain any commonly used ASCII
characters. Labels with more than 16 characters are truncated to 16 characters.

12-5

Digital Commands
SIZE

SIZE

Command DIGital<N>:SIZE {SMALl | MEDium | LARGe}

The :DIGital<N>:SIZE command changes the vertical size of all the displayed
digital channels. The digital subsystem must be enabled before this command
will work. See ENABle command in the root subsystem.

<N> An integer, 0 - 15.

Example This example changes the size to medium for all displayed digital channels or
buses.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”DIGITAL5:SIZE MEDIUM”
30 END

Query :DIGital<N>:SIZE?

The :DIGital:CHANnel:SIZE? query returns the size of the displayed digital
channels.

Returned Format [:DIGital<N>:SIZE] {SMALl | MEDium | LARGe}<NL>

The DIGital commands only apply to the MSO Oscilloscopes.

12-6

Digital Commands
THReshold

THReshold

Command :DIGital<N>:THReshold {CMOS50 | CMOS30 | CMOS25 |
ECL | PECL | TTL | <value>}

The :DIGital<N>:THReshold command sets the logic threshold value for a pod.
Setting the threshold for digital channels 0 through 7 sets the threshold for pod
1 while setting the threshold for digital channels 8 through 15 sets the threshold
for pod 2. This command is equivalent to the POD<N>:THReshold command.

The threshold is used for triggering purposes and for displaying the digital data
as high (above the threshold) or low (below the threshold). The voltage values
for the predefined thresholds are:

CMOS50=2.5 V

CMOS30=1.65 V

CMOS25=1.25 V

ECL=-1.3 V

PECL=3.7 V

TTL=1.4 V

<N> An integer, 0 - 15.

<value> A real number representing the voltage value which distinguishes a 1 logic level
from a 0 logic level. Waveform voltages greater than the threshold are 1 logic
levels while waveform vlotages less than the threshold are 0 logic levels. The
range of the threshold voltage is from -8 volts to 8 volts.

Example This example sets the threshold to 5 volts for bits D15 through D8.
10 Output 707;”DIGital8:THReshold 5”
20 END

The DIGital commands only apply to the MSO Oscilloscopes.

12-7

Digital Commands
THReshold

Query :DIGital<N>:THREShold?

The :DIGital<N>:THReshold? query returns the threshold value for the
specified pod.

Return format [:DIGital<N>:THReshold] {CMOS50 | CMOS30 | CMOS25 | ECL |
PECL | TTL | <value>}<NL>

12-8

13

Disk Commands

13-2

Disk Commands

The DISK subsystem commands perform the disk operations as defined
in the File menu. This allows saving and loading of waveforms and
setups, as well as saving screen images to bitmap files.

These DISK commands and queries are implemented in the Infiniium
Oscilloscopes:

• CDIRectory
• DELete
• DIRectory?
• LOAD
• MDIRectory
• MSTore
• PWD?
• SEGMented
• SIMage
• STORe

Enclose File Name in Quotation Marks

When specifying a file name, you must enclose it in quotation marks.

Filenames are Not Case Sensitive.

The filename that you use is not case sensitive.

13-3

Disk Commands
CDIRectory

CDIRectory

Command :DISK:CDIRectory "<directory>"

The :DISK:CDIRectory command changes the present working directory to the
designated directory name. An error occurs when the requested directory does
not exist. You can then view the error with the :SYSTem:ERRor? [{NUMBer |
STRing}] query.

<directory> A character-quoted ASCII string, which can include the subdirectory
designation. You must separate the directory name and any subdirectories with
a backslash (\).

Example This example sets the present working directory to C:\SCOPE\DATA.
10 OUTPUT 707;":DISK:CDIRECTORY ""C:\SCOPE\DATA"""
20 END

Directories Not Allowed
You can execute the command CDIR "A:\", but the following commands are not
allowed.

:DISK:CDIR “C:\”

:DISK:CDIR “C:\SCOPE\BIN”

:DISK:CDIR “C:\SCOPE\CAL”

If you attempt to execute CDIR using these directories an error message (-257) is
issued and the present working directory (PWD) is unchanged.

13-4

Disk Commands
DELete

DELete

Command :DISK:DELete "<file_name>"

The :DISK:DELete command deletes a file from the disk. An error is displayed
on the oscilloscope screen if the requested file does not exist. The default path
is C:\SCOPE\DATA.

<file_name> A character-quoted ASCII string which can include subdirectories with the
name of the file.

Example This example deletes FILE1.SET from the disk.
10 OUTPUT 707;":DISK:DELETE ""FILE1.SET"""
20 END

13-5

Disk Commands
DIRectory?

DIRectory?

Query :DISK:DIRectory? ["<directory>"]

The :DISK:DIRectory? query returns the requested directory listing. Each entry
is 63 bytes long, including a carriage return and line feed. The default path is
C:\SCOPE\DATA.

<directory> The list of filenames and directories.

Returned Format [:DISK:DIRectory]<n><NL><directory>

<n> The specifier that is returned before the directory listing, indicating the number
of lines in the listing.

<directory> The list of filenames and directories. Each line is separated by a <NL>.

Example This example displays a number, then displays a list of files and directories in
the current directory. The number indicates the number of lines in the listing.
10 DIM A$[80]
20 INTEGER Num_of_lines
30 OUTPUT 707;":DISK:DIR?"
40 ENTER 707;Num_of_lines
50 PRINT Num_of_lines
60 FOR I=1 TO Num_of_lines
70 ENTER 707;A$
80 PRINT A$
90 NEXT I
100 END

13-6

Disk Commands
LOAD

LOAD

Command :DISK:LOAD "<file_name>"[,<destination>]

The :DISK:LOAD command restores a setup or a waveform from the disk. The
type of file is determined by the filename suffix if one is present, or by the
destination field if one is not present. You can load .WFM, .CSV, .TSV, .TXT,
and .SET file types. The destination is only used when loading a waveform
memory.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. You can use either .WFM, .CSV, .TSV, .TXT or .SET as a
suffix after the filename. If no file suffix is specified, the default is .wfm.

The present working directory is assumed, or you can specify the entire path.
For example, you can load the standard setup file "SETUP0.SET" using the
command:

:DISK:LOAD "C:|SCOPE\SETUPS\SETUP0.SET"

Or, you can use :DISK:CDIRectory to change the present working directory to
C:\SCOPE\SETUPS, then just use the file name ("SETUP0.SET", for example).
The default path is C:\SCOPE\DATA.

<destination> WMEMory<N>.

Where <N> is an integer from 1-4.

If a destination is not specified, waveform memory 1 is used.

Example This example restores the waveform in FILE1.WFM to waveform memory 1.
10 OUTPUT 707;":DISK:LOAD ""FILE1.WFM"",WMEM1"
20 END

13-7

Disk Commands
MDIRectory

MDIRectory

Command :DISK:MDIRectory "<directory>"

The :DISK:MDIRectory command creates a directory in the present working
directory which has been set by the :DISK:CDIRectory command. If the present
working directory has not been set by the :DISK:CDIRectory command, you
must specify the full path in the <directory> parameter as shown in Example 1
below.

An error is displayed if the requested subdirectory does not exist.

<directory> A quoted ASCII string which can include subdirectories. You must separate the
directory name and any subdirectories with a backslash (\).

Example 1 This example creates the directory CPROGRAMS in the C:\SCOPE\DATA
directory.
10 OUTPUT 707;":DISK:MDIRECTORY ""C:\SCOPE\DATA\CPROGRAMS"""
20 END

Example 2 This example creates the directory CPROGRAMS in the present working
directory set by the :DISK:CDIRectory command.
10 OUTPUT 707;":DISK:MDIRECTORY ""CPROGRAMS"""
20 END

You can check your path with the :DISK:DIRectory? query.

13-8

Disk Commands
MSTore

MSTore

Command :DISK:MSTore "<file_name>",<format>,<preamble>

The :DISK:MSTore command saves one or more waveform sources to a file.
The number of waveform sources stored depends on the number of waveform
sources that turned on.

The filename does not include a suffix. The suffix is supplied by the
oscilloscope, depending on file format specified.

If a function is on that uses an FFT Magnitude, FFT Phase, or Versus math
operators or references another function that uses one of these math operators,
it will not be stored to the file.

For sources that are on, channels values are stored first, functions are stored
second, waveform memories are stored third, and digital channels are stored
last. Channels, functions, and waveform memories are store in the order of 1
to 4. Digital channels are stored from 1 to 16

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. The filename assumes the present working directory if a
path does not precede the file name.

<format> {CSV | BINary | TSV | XYPairs | YVALues}

The BINary format saves the preamble and data in a binary format which is
described in the on-line help system. The preamble and data columns in the
file are separated by commas for the CSV and XYPairs formats. All other formats
use tabs to separate the columns.

<preamble> {ON | OFF}

Example This example stores four waveform data sources to FILE1 in comma separated
values with the preamble information turned off.
10 OUTPUT 707;":DISK:MSTORE ""FILE1"",CSV,OFF"
20 END

13-9

Disk Commands
MSTore

Preamble Definition

<preamble_
data>

<revision>
<type>
<start>
<points>
<count 1...n>
<X display range 1...n>
<X display origin 1...n>
<X increment 1...n>
<X origin 1...n>
<X units 1...n>
<Y display range 1...n>
 <Y display origin 1...n>
<Y increment 1...n>
<Y origin 1...n>
<Y units 1...n>
<frame model #>
<date>
<time>
<max bandwidth limit>
<min bandwidth limit>

<revision> 0

Always zero.

<type> RAW type.
AVERage type.
VHIStogram.
HHIStogram.
INTerpolate.
DIGital.
PDETect.

<start> 0

Always zero.

<points> The number of data points or data pairs contained in the waveform data.

<count 1...n> The number of count columns (n) depends on the number of sources being
stored. For the AVERAGE waveform type, the count value is the fewest number
of hits for all time buckets. This value may be less than or equal to the value
requested with the :ACQuire:AVERage:COUNt command. For NORMAL, RAW,
and INTerpolate this value is 0 or 1.

13-10

Disk Commands
MSTore

<X display
range 1...n>

The number of X display range columns (n) depends on the number of sources
being stored. The X display range is the X-axis duration of the waveform that
is displayed. For time domain waveforms, it is the duration of time across the
display. If the value is zero then no data has been acquired.

<X display
origin 1...n>

The number of X display origin columns (n) depends on the number of sources
being stored. The X display origin is the X-axis value at the left edge of the
display. For time domain waveforms, it is the time at the start of the display.
This value is treated as a double precision 64-bit floating point number. If the
value is zero then no data has been acquired.

<X increment
1...n>

The number of X increment columns (n) depends on the number of sources
being store. The X increment is the duration between data points on the X axis.
For time domain waveforms, this is the time between points. If the value is zero
then no data has been acquired.

<X origin
1...n>

The number of X origin columns (n) depends on the number of sources being
store. The X origin is the X-axis value of the first data point in the data record.
For time domain waveforms, it is the time of the first point. This value is treated
as a double precision 64-bit floating point number. If the value is zero then no
data has been acquired.

<X units 1...n> The number of X units columns (n) depends on the number of sources being
store. The X units is the unit of measure for each time value of the acquired data.

<Y display
range 1...n>

The number of Y display range columns (n) depends on the number of sources
being store. The Y display range is the Y-axis duration of the waveform which
is displayed. For voltage waveforms, it is the amount of voltage across the
display. If the value is zero then no data has been acquired.

<Y display
origin 1...n>

The number of Y display origin columns (n) depends on the number of sources
being store. The Y-display origin is the Y-axis value at the center of the display.
For voltage waveforms, it is the voltage at the center of the display. If the value
is zero then no data has been acquired.

<Y increment
1...n>

The number of Y increment columns (n) depends on the number of sources
being store. The Y increment is the duration between Y-axis levels. For voltage
waveforms, it is the voltage corresponding to one level. If the value is zero
then no data has been acquired.

<Y origin
1...n>

The number of Y origin columns (n) depends on the number of sources being
store. The Y origin is the Y-axis value at level zero. For voltage waveforms, it
is the voltage at level zero. If the value is zero then no data has been acquired.

<Y units 1...n> The number of Y units columns (n) depends on the number of sources being
store. The Y units is the unit of measure of each voltage value of the acquired
waveform.

13-11

Disk Commands
MSTore

<frame> A string containing the model number and serial number of the oscilloscope in
the format of MODEL#:SERIAL#.

<date> A string containing the date in the format of day, month, and year.

<time> A string containing the time in the format HH:MM:SS, where HH is the hour, 0
to 23, MM is the minutes, 0 to 59, and SS is the seconds, 0 to 59.

<max bandwidth
limit>

<min bandwidth
limit>

The band pass consists of two values that are an estimation of the maximum
and minimum bandwidth limits of the source waveform. The bandwidth limit
is computed as a function of the selected coupling and filter mode.

13-12

Disk Commands
PWD?

PWD?

Query :DISK:PWD?

The :DISK:PWD? query returns the name of the present working directory
(including the full path). If the default has not been changed by the
:DISK:CDIRectory command, the DISK:PWD? query will return an empty string.

Returned Format :DISK:PWD? <present_working_directory><NL>

Example This example places the present working directory in the string variable Wdir?,
then prints the contents of the variable to the computer’s screen.
10 DIM Wdir$[200]
20 OUTPUT 707;":DISK:PWD?"
30 ENTER 707; Wdir$
40 PRINT Wdir$
50 END

13-13

Disk Commands
SEGMented

SEGMented

Command :DISK:SEGMented {ALL | CURRent}

The :DISK:SEGMented command sets whether all segments or just the current
segment are saved to a file when the :DISK:STORe command is issued and the
source is a channel but not a waveform memory or function. Before segments
can be saved, the :ACQuire:MODE must be set to the SEGMented mode and
segments must be acquired.

Example This example sets the disk segmented memory store method to CURRent.
10 OUTPUT 707;":DISK:SEGMENTED CURRENT”
20 END

Query :DISK:SEGMented?

The :DISK:SEGMented? query returns disk segmented memory store method
value.

Returned Format [:DISK:SEGMented] {ALL | CURRent}<NL>

Example This example places the disk store method in the string variable Method$, then
prints the contents of the variable to the computer’s screen.
10 DIM Method$[200]
20 OUTPUT 707;":DISK:SEGMENTED?"
30 ENTER 707; Method$
40 PRINT Method$
50 END

13-14

Disk Commands
SIMage

SIMage

Command :DISK:SIMage “<file_name>” [,<format>
[,{SCReen|GRATicule}
[,{ON|1} | {OFF|0}
[,{NORMal|INVert}]]]]

The DISK:SIMage command saves a screen image in BMP, GIF, TIF, PNG, or
JPEG format. The extension is supplied by the oscilloscope depending on the
selected file format. If you do not include the format in the command, the file
is saved in the format which is shown in the Save Screen dialog box. The default
path is C:\SCOPE\DATA.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used.

<format> {BMP | GIF | TIF | JPEG | PNG}

Examples OUTPUT 707;":DISK:SIM " "FILE1" ",BMP,SCR,ON,INVERT"
or
OUTPUT 707;":DISK:SIM " "FILE1" ",TIF,GRAT,ON"
or
OUTPUT 707;":DISK:SIM " "FILE1" " "

13-15

Disk Commands
STORe

STORe

Command :DISK:STORe {<source> | POD1 | POD2 |
PODALL},"<file_name>" [,<format>]

The :DISK:STORe command saves a setup or a waveform to a disk. The filename
does not include a suffix. The suffix is supplied by the oscilloscope, depending
on the source and file format specified. The :WAVeform:VIEW command
determines the maximum range of waveform data that can be saved to a file.
See the :WAVeform:VIEW command for more information.

<source> {CHANnel<N> | FUNCtion<N> | HISTogram | WMEMory<N> | SETup}

<N> For CHANnel<N>:

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

For FUNCtion<N> and WMEM<N>:

An integer, 1 - 4, representing the function or waveform memory number.

POD1 Bits 0 through 7 of the digital channels only available on the 5483xD Infiniium
oscilloscopes. Must use the TEXT format.

POD2 Bits 8 through 15 of the digital channels only available on the 5483xD Infiniium
oscilloscopes. Must use the TEXT format.

PODALL Bits 0 through 15 of the digital channels only available on the 5483xD Infiniium
oscilloscopes. Must use the TEXT format.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. The filename assumes the present working directory if a
path does not precede the file name. The default path for the SETup source is
C:\SCOPE\SETUPS. The default path for all other sources is C:\SCOPE\DATA.

<format> {INTernal}

or

{TEXT {,YVALues | VERBose | XYPairs | CSV | BIN |
TSV[,<preamble>[,<start>[,<size>]]]}}

<preamble> {ON | OFF}

<start> An integer value which is the starting point in memory where you want the
STORe command to beginning saving data to a file. The minimum value is 0
and the maximum value depends on the maximum memory depth.

13-16

Disk Commands
STORe

<size> An integer value which is the amount of data in memory that you want to save
to a file. The minimum value is 0 and the maximum value depends on the
maximum memory depth.

Example This example stores the current oscilloscope setup to FILE1 on the disk.
10 OUTPUT 707;":DISK:STORE SETUP,""FILE1"""
20 END

14

Display Commands

14-2

Display Commands

The DISPlay subsystem controls the display of data, text, and graticules,
and the use of color.

These DISPlay commands and queries are implemented in the Infiniium
Oscilloscopes:

• CGRade
• CGRade:LEVels?
• COLumn
• CONNect
• DATA?
• DCOLor (Default COLor)
• GRATicule
• LABel
• LINE
• PERSistence
• ROW
• SCOLor (Set COLor)
• STRing
• TEXT

14-3

Display Commands
CGRade

CGRade

Command :DISPlay:CGRade {{ON | 1} | {OFF | 0}}

The :DISPlay:CGRade command sets the color grade persistence on or off.

When in the color grade persistence mode, all waveforms are mapped into a
database and shown with different colors representing varying number of hits
in a pixel. "Connected dots" display mode (:DISPlay:CONNect) is disabled when
the color grade persistence is on.

The oscilloscope has three features that use a specific database. This database
uses a different memory area than the waveform record for each channel. The
three features that use the database are histograms, mask testing, and color
grade persistence. When any one of these three features is turned on, the
oscilloscope starts building the database. The database is the size of the
graticule area and varies in size. Behind each pixel is a 21-bit counter. Each
counter is incremented each time a pixel is hit by data from a channel or
function. The maximum count (saturation) for each counter is 2,097,151. You
can check to see if any of the counters is close to saturation by using the
DISPlay:CGRade:LEVels? query. The color grade persistence uses colors to
represent the number of hits on various areas of the display. The default
color-grade state is off.

Example This example sets the color grade persistence on.
10 OUTPUT 707;":DISPLAY:CGRADE ON"
20 END

14-4

Display Commands
CGRade

Query :DISPlay:CGRade?

The DISPlay:CGRade query returns the current color-grade state.

Returned Format [:DISPlay:CGRade] {1 | 0}<NL>

Example This example returns the current color grade state.
10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:CGRADE?"
30 ENTER 707;Cgrade$
40 PRINT Cgrade$
50 END

14-5

Display Commands
CGRade:LEVels?

CGRade:LEVels?

Query :DISPlay:CGRade:LEVels?

The :DISPlay:CGRade:LEVels? query returns the range of hits represented by
each color. Fourteen values are returned, representing the minimum and
maximum count for each of seven colors. The values are returned in the
following order:

• White minimum value

• White maximum value

• Yellow minimum value

• Yellow maximum value

• Orange minimum value

• Orange maximum value

• Red minimum value

• Red maximum value

• Pink minimum value

• Pink maximum value

• Blue minimum value

• Blue maximum value

• Green minimum value

• Green maximum value

Returned Format [DISPlay:CGRade:LEVels] <color format><NL>

<color format> <intensity color min/max> is an integer value from 0 to 2,076,151

14-6

Display Commands
CGRade:LEVels?

Example This example gets the range of hits represented by each color and prints it on
the computer screen:
10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:CGRADE:LEVELS?"
30 ENTER 707;Cgrade$
40 PRINT Cgrade$
50 END

Colors start at green minimum, maximum, then blue, pink, red, orange, yellow,
white. The format is a string where commas separate minimum and maximum
values. The largest number in the string can be 2,076,151

An example of a possible returned string is as follows:

1,414,415,829,830,1658,1659,3316,3317,6633,6634,13267,13268,26535

14-7

Display Commands
COLumn

COLumn

Command :DISPlay:COLumn <column_number>

The :DISPlay:COLumn command specifies the starting column for subsequent
:DISPlay:STRing and :DISPlay:LINE commands.

<column
_number>

An integer representing the starting column for subsequent :DISPlay:STRing
and :DISPlay:LINE commands. The range of values is 0 to 90.

Example This example sets the starting column for subsequent :DISPlay:STRing and
:DISPlay:LINE commands to column 10.
10 OUTPUT 707;":DISPLAY:COLUMN 10"
20 END

Query :DISPlay:COLumn?

The :DISPlay:COLumn? query returns the column where the next
:DISPlay:LINE or :DISPlay:STRing starts.

Returned Format [:DISPlay:COLumn] <value><NL>

Example This example returns the current column setting to the string variable, Setting$,
then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:COLUMN?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

14-8

Display Commands
CONNect

CONNect

Command :DISPlay:CONNect {{ON|1} | {OFF|0}}

When enabled, :DISPlay:CONNect draws a line between consecutive waveform
data points. This is also known as linear interpolation. :DISPlay:CONNect is
force to off when color grade (:DISPlay:CGRade) persistence is on.

Example This example turns on the connect-the-dots feature.
10 OUTPUT 707;":DISPLAY:CONNECT ON"
20 END

Query :DISPlay:CONNect?

The :DISPlay:CONNect? query returns the status of the connect-the-dots
feature.

Returned Format [:DISPlay:CONNect] {1 | 0}<NL>

14-9

Display Commands
DATA?

DATA?

Query :DISPlay:DATA?
[<type>[,<screen_mode>[,<compression>
[,<inversion>]]]]

The :DISPlay:DATA? query returns information about the captured data. If no
options to the query are specified, the default selections are BMP file type,
SCReen mode, compression turned ON, and inversion set to NORMal.

<type> The bitmap type: BMP | JPG | GIF | TIF | PNG.

<screen_mode> The display setting: SCReen | GRATicule. Selecting GRATicule displays a
10-by-8 (unit) display graticule on the screen. See also :DISPlay:GRATicule.

<compression> The file compression feature: ON | OFF.

<inversion> The inversion of the displayed file: NORMal | INVert.

Returned Format [:DISPlay:DATA] <binary_block_data><NL>

<binary_block
_data>

Data in the IEEE 488.2 definite block format.

14-10

Display Commands
DCOLor

DCOLor

Command :DISPlay:DCOLor [<color_name>]

The :DISPlay:DCOLor command resets the screen colors to the predefined
factory default colors. It also resets the grid intensity.

<color_name> {CGLevel1 | CGLevel2 | CGLevel3 | CGLevel4 | CGLevel5
| CGLevel6 | CGLevel7 | CHANnel1 | CHANnel2 | CHANnel3
| CHANnel4 | DBACkgrnd | GRID | MARKers
| MEASurements | MIConsCGLevel1| MTPolygons
| STEXt | WBACkgrnd | TINPuts | WOVerlap | TSCale
| WMEMories | WINText | WINBackgrnd}

Example This example sends the :DISPlay:DCOLor command.
10 OUTPUT 707;":DISPLAY:DCOLOR"
20 END

14-11

Display Commands
GRATicule

GRATicule

Commands :DISPlay:GRATicule {GRID|FRAMe}
:DISPlay:GRATicule:INTensity <intensity_value>
:DISPlay:GRATicule:NUMBer {4 | 2 | 0}}

The :DISPlay:GRATicule command selects the type of graticule that is
displayed. Infiniium oscilloscopes have a 10-by-8 (unit) display graticule grid
GRID), a grid line is place on each vertical and horizontal division. When it is
off (FRAMe), a frame with tic marks surrounds the graticule edges.

You can dim the grid's intensity or turn the grid off to better view waveforms
that might be obscured by the graticule lines using the
:DISPlay:GRATicule:INTensity command. Otherwise, you can use the grid to
estimate waveform measurements such as amplitude and period.

When printing, the grid intensity control does not affect the hard copy. To
remove the grid from a printed hard copy, you must turn off the grid before
printing.

<intensity
_value>

A integer from 0 to 100, indicating the percentage of grid intensity.

You can divide the waveform viewing area from one area into two or four
separate viewing areas using the :DISPlay:GRATicule:NUMBer command. This
allows you to separate waveforms without having to adjust the vertical position
controls.

Example This example sets up the oscilloscope's display background with a frame that
is separated into major and minor divisions.
10 OUTPUT 707;":DISPLAY:GRATICULE FRAME"
20 END

14-12

Display Commands
GRATicule

Queries :DISPlay:GRATicule?
:DISPlay:GRATicule:INTensity?
:DISPlay:GRATicule:NUMBer?

The :DISPlay:GRATicule?, :DISPlay:GRATicule:INTensity?, and
DISPlay:GRATicule:NUMBer? queries return the type of graticule currently
displayed, the intensity, or the number of viewing areas, depending on the query
you request.

Returned Format [:DISPlay:GRATicule] {GRID|FRAMe}<NL>
[:DISPlay:GRATicule:INTensity] <value><NL>
[:DISPlay:GRATicule:NUMBer] {4 | 2 | 0}<NL>

Example This example places the current display graticule setting in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:GRATICULE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

14-13

Display Commands
LABel

LABel

Command :DISPlay:LABel {{ON | 1} | {OFF | 0}}

The :DISPlay:LABel command turns on or off the display of analog and digital
channel labels. Label names can be up to 6 characters long. The label name is
assigned by using one of the following commands:

Example This example turns on the display of all labels.
10 OUTPUT 707;":DISPLAY:LABEL ON"
20 END

Query :DISPlay:LABel?

The :DISPlay:LABel? query returns the current state of the labels.

Returned Format [:DISPlay:LABel] {1 | 0}<NL>

Example This example places the current label state into the string variable Setting$
variable, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:LABEL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

Bus label :BUS<N>:LABel

Digital channel label :DIGital<N>:LABel

Analog channel label CHANnel<N>:LABel

14-14

Display Commands
LINE

LINE

Command :DISPlay:LINE "<string_argument>"

The :DISPlay:LINE command writes a quoted string to the screen, starting at
the location specified by the :DISPlay:ROW and :DISPlay:COLumn commands.
When using the C programming language, quotation marks as shown in the
example delimit a string.

<string
_argument>

Any series of ASCII characters enclosed in quotation marks.

Example This example writes the message “Infiniium Test” to the screen, starting at the
current row and column location.
10 OUTPUT 707;":DISPLAY:LINE ""Infiniium Test"""
20 END

This example writes the message "Infiniium Test" to the screen using C.
Quotation marks are included because the string is delimited.
printf("\"Infiniium Test\"");

You may write text up to column 94. If the characters in the string do not fill
the line, the rest of the line is blanked. If the string is longer than the space
available on the current line, the excess characters are discarded.

In any case, the ROW is incremented and the COLumn remains the same. The
next :DISPlay:LINE command will write on the next line of the display. After
writing the last line in the display area, the ROW is reset to 0.

14-15

Display Commands
PERSistence

PERSistence

Command :DISPlay:PERSistence {MINimum | INFinite}

The :DISPlay:PERSistence command sets the display persistence. It works in
both real time and equivalent time modes. The parameter for this command
can be either MINimum (zero persistence) or INFinite.

Example This example sets the persistence to infinite.
10 OUTPUT 707;":DISPLAY:PERSISTENCE INFINITE"
20 END

Query :DISPlay:PERSistence?

The :DISPlay:PERSistence? query returns the current persistence value.

Returned Format [:DISPlay:PERSistence] {MINimum | INFinite}<NL>

Example This example places the current persistence setting in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:PERSISTENCE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

14-16

Display Commands
ROW

ROW

Command :DISPlay:ROW <row_number>

The :DISPlay:ROW command specifies the starting row on the screen for
subsequent :DISPlay:STRing and :DISPlay:LINE commands. The row number
remains constant until another :DISPlay:ROW command is received, or the row
is incremented by the :DISPlay:LINE command.

<row_number> An integer representing the starting row for subsequent :DISPlay:STRing and
:DISPlay:LINE commands. The range of values 0 to 23.

Example This example sets the starting row for subsequent :DISPlay:STRing and
:DISPlay:LINE commands to 10.
10 OUTPUT 707;":DISPLAY:ROW 10"
20 END

Query :DISPlay:ROW?

The :DISPlay:ROW? query returns the current value of the row.

Returned Format [:DISPlay:ROW] <row_number><NL>

Example This example places the current value for row in the string variable, Setting$,
then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:ROW?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

14-17

Display Commands
SCOLor

SCOLor

Command :DISPlay:SCOLor <color_name>, <hue>, <saturation>,
<luminosity>

The :DISPlay:SCOLor command sets the color of the specified display element
and restores the colors to their factory settings. The display elements are
described in Table 14-1.

<color_name> {CGLevel1 | CGLevel2 | CGLevel3 | CGLevel4 | CGLevel5
| CGLevel6 | CGLevel7 | CHANnel1 | CHANnel2 | CHANnel3
| CHANnel4 | DBACkgrnd | GRID | MARKers
| MEASurements | MICons | MTPolygons
| STEXt | WBACkgrnd | TINPuts | WOVerlap | TSCale
| WMEMories | WINText | WINBackgrnd}

Table 14-1 Color Names

Color Name Definition

CGLevel1 Color Grade Level 1 waveform display element.

CGLevel2 Color Grade Level 2 waveform display element.

CGLevel3 Color Grade Level 3 waveform display element.

CGLevel4 Color Grade Level 4 waveform display element.

CGLevel5 Color Grade Level 5 waveform display element.

CGLevel6 Color Grade Level 6 waveform display element.

CGLevel7 Color Grade Level 7 waveform display element.

CHANnel1 Channel 1 waveform display element.

CHANnel2 Channel 2 waveform display element.

CHANnel3 Channel 3 waveform display element.

CHANnel4 Channel 4 waveform display element.

DBACkgrnd Display element for the border around the outside of the waveform viewing
area.

GRID Display element for the grid inside the waveform viewing area.

MARKers Display element for the markers.

MEASurements Display element for the measurements text.

MICons Display element for measurement icons to the left of the waveform viewing
area.

14-18

Display Commands
SCOLor

<hue> An integer from 0 to 100. The hue control sets the color of the chosen display
element. As hue is increased from 0%, the color changes from red, to yellow,
to green, to blue, to purple, then back to red again at 100% hue. For color
examples, see the sample color settings table in the Infiniium Oscilloscope
online help file. Pure red is 100%, pure blue is 67%, and pure green is 33%.

<saturation> An integer from 0 to 100. The saturation control sets the color purity of the
chosen display element. The saturation of a color is the purity of a color, or the
absence of white. A 100% saturated color has no white component. A 0%
saturated color is pure white.

<luminosity> An integer from 0 to 100. The luminosity control sets the color brightness of
the chosen display element. A 100% luminosity is the maximum color
brightness. A 0% luminosity is pure black.

Example This example sets the hue to 50, the saturation to 70, and the luminosity to 90
for the markers.
10 OUTPUT 707;":DISPLAY:SCOLOR MARKERS,50,70,90"
20 END

STEXt Display element for status messages displayed in the upper left corner of the
display underneath the menu bar. Changing this changes the memory bar’s
color.

WBACkgrnd Display element for the waveform viewing area’s background.

TINPuts Display element for line and aux menu entries on four channel oscilloscopes.
On two channel oscilloscopes, it is the display element for line and external
menu entries.

WOVerlap Display element for waveforms when they overlap each other.

TSCale Display element for horizontal scale and offset control text.

WMEMories Display element for waveform memories.

WINText Display element used in dialog box controls and pull-down menus.

WINBackgrnd Display element for the background color used in dialog boxes and buttons.

Color Name Definition

14-19

Display Commands
SCOLor

Query :DISPlay:SCOLor? <color_name>

The :DISPlay:SCOLor? query returns the hue, saturation, and luminosity for the
specified color.

Returned Format [:DISPlay:SCOLor] <color_name>, <hue>, <saturation>,
<luminosity><NL>

Example This example places the current settings for the graticule color in the string
variable, Setting$, then prints the contents of the variable to the computer's
screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:SCOLOR? GRATICULE"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

14-20

Display Commands
STRing

STRing

Command :DISPlay:STRing "<string_argument>"

The :DISPlay:STRing command writes text to the oscilloscope screen. The text
is written starting at the current row and column settings. If the column limit
is reached, the excess text is discarded. The :DISPlay:STRing command does
not increment the row value, but :DISPlay:LINE does.

<string
_argument>

Any series of ASCII characters enclosed in quotation marks.

Example This example writes the message “Example 1” to the oscilloscope's display
starting at the current row and column settings.
10 OUTPUT 707;":DISPLAY:STRING ""Example 1"""
20 END

14-21

Display Commands
TEXT

TEXT

Command :DISPlay:TEXT BLANk

The :DISPlay:TEXT command blanks the user text area of the screen.

Example This example blanks the user text area of the oscilloscope's screen.
10 OUTPUT 707;":DISPLAY:TEXT BLANK"
20 END

14-22

15

External Trigger Commands

15-2

External Trigger Commands

The EXTernal trigger subsystem commands control the vertical, Y axis
functions of the oscilloscope’s external trigger. These EXTernal
commands and queries are implemented in the Infiniium Oscilloscopes:

• BWLimit
• INPut
• PROBe
• PROBe:ATTenuation (only for the 1154A probe)
• PROBe:EADapter (only for the 1153A, 1154A, and 1159A probes)
• PROBe:ECoupling (only for the 1153A, 1154A and 1159A probes)
• PROBe:EXTernal
• PROBe:EXTernal:GAIN
• PROBe:EXTernal:UNITs
• PROBe:GAIN (only for the 1154A probe)
• PROBe:ID?
• PROBe:SKEW
• RANGe
• UNITs

The EXTernal commands only apply to the two channel Infiniium
Oscilloscope.

15-3

External Trigger Commands
BWLimit

BWLimit

Command :EXTernal:BWLimit {{ON|1} | {OFF|0}}

The :EXTernal:BWLimit command controls the low-pass filter. When ON, the
bandwidth of the external trigger is limited. The bandwidth limit filter can be
used with either AC or DC coupling.

Example This example sets the internal low-pass filter to "ON" for the external trigger.
10 OUTPUT 707;":EXTERNAL:BWLIMIT ON"
20 END

Query :EXTernal:BWLimit?

The :EXTernal:BWLimit? query returns the state of the low-pass filter for the
external trigger.

Returned Format [:EXTernal:BWLimit] {1|0}<NL>

Example This example places the current setting of the low-pass filter in the variable
Limit, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":EXTERNAL:BWLIMIT?"
30 ENTER 707;Limit
40 PRINT Limit
50 END

15-4

External Trigger Commands
INPut

INPut

Command :EXTernal:INPut <parameter>

The :EXTernal:INPut command selects the input coupling, impedance, and LF/
HF reject for the external trigger. The coupling can be set to AC, DC, DC50 or
DCFifty, or LFR1 or LFR2 (low-frequency reject).

LFR1 and LFR2 only apply if an 1153A probe is connected to the oscilloscope’s
External Trigger input. With an 1152A probe attached to the External Trigger
input, the :EXTernal:INPut command will not change either the coupling or
impedance.

<parameter> The parameters available in this command for Infiniium are listed below.

• DC: dc coupling, 1 MΩ input impedance

• DC50 | DCFifty: dc coupling, 50Ω input impedance

• AC: ac 1 MΩ input impedance

• LFR1 | LFR2: ac 1 MΩ input impedance

Example This example sets the external trigger input to DC50.
10 OUTPUT 707;":EXTERNAL:INPUT DC50"
20 END

Query :EXTernal:INPut?

The :EXTernal:INPut? query returns the state of the external trigger input.

Returned Format [EXTernal:INPut]<parameter><NL>

Example This example places the current input for the external trigger in the string
variable, Input$. The program then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":EXTERNAL:INPUT?
30 ENTER 707;Input$
40 PRINT Input$
50 END

15-5

External Trigger Commands
PROBe

PROBe

Command :EXTernal:PROBe {<attenuation_factor>,{RATio |
DECibel}}

The :EXTernal:PROBe command sets the probe attenuation factor for the User
Defined Probe configuration in the Probe Setup dialog box and, optionally, the
units for the probe attenuation factor. The range of the probe attenuation factor
is from 0.0001 to 1,000 and from -80 dB to 60 dB. The reference factors that
are used for scaling the display are changed with this command, and affect
automatic measurements and trigger levels.

<attenuation
_factor>

A real number from 0.0001 to 1,000, and -80 dB to 60 dB, representing the probe
attenuation factor; the factor depends on the units.

Example This example sets the probe attenuation factor of the external trigger to 10, and
the units to decibel.
10 OUTPUT 707;":EXTERNAL:PROBE 10,DEC"
20 END

Query :EXTernal:PROBe?

The :EXTernal:PROBe? query returns the current probe attenuation setting for
the external trigger and the units.

Returned Format [:EXTernal:PROBe] <attenuation_factor>,{RATio | DECibel}<NL>

Example This example places the current attenuation setting for the external trigger in
the string variable, Atten$, and prints the contents.
10 DIM Atten$[50]!Dimension variable
20 OUTPUT 707;":EXTERNAL:PROBE?"
30 ENTER 707;Atten$
40 PRINT Atten$
50 END

15-6

External Trigger Commands
PROBe:ATTenuation

PROBe:ATTenuation

Command :EXTernal:PROBe:ATTenuation {DIV1 | DIV10}

The :EXTernal:PROBe:ATTenuation command sets the internal attenuation for
the 1154A probe.

Example This example sets the probe attenuation to divide by 10.
10 OUTPUT 707;":EXTERNAL:PROBE:ATTENUATION DIV10"
20 END

Query :EXTernal:PROBe:ATTenuation?

The :EXTernal:PROBe:ATTenuation? query returns the current probe
attenuation setting.

Returned Format [:EXTernal:PROBe:ATTenuation] {DIV1 | DIV10}<NL>

This command is only available for the 1154A probe. If one of these probes is not
connected to the external trigger you will get a Settings Conflict error.

15-7

External Trigger Commands
PROBe:EADapter

PROBe:EADapter

Command :EXTernal:PROBe:EADapter {NONE | DIV10 |
DIV20 | DIV100}

The :EXTernal:EADapter command sets the Infiniium external adapter control.
The 1153A, 1154A, and 1159A probes have external adapters that you can
attach to the end of the probe. When you attach one of these adapters, you
should use the EADapter command to set the external adapter control to match
the adapter connected to your probe as follows.

Example This example sets the external adapter to divide by 10:
10 OUTPUT 707;":EXTERNAL:PROBE:EADAPTER DIV10"
20 END

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

DIV10 Use this setting when you have a divide by
10 adapter connected to the end of your
probe.

DIV20 Use this setting when you have a divide by
20 adapter connected to the end of your
probe. (1159A probe only)

DIV100 Use this setting when you have a divide by
100 adapter connected to the end of your
probe. (1153A probe only)

This command is only available for the 1153A, 1154A, and 1159A probes. If one of
these probes is not connected to the external trigger you will get a Settings Conflict
error.

15-8

External Trigger Commands
PROBe:EADapter

Query :EXTernal:PROBe:EADapter?

The :EXTernal:PROBe:EADapter? query returns the external adapter value.

Returned Format [EXTernal:PROBe:EDApter] {NONE | DIV10 | DIV20 |
DIV100}<NL>

Example This example places the external adapter value in the string variable, Adapter$,
then prints the contents of the variable to the computer's screen.
10 DIM Adapter$[50]!Dimension variable
20 OUTPUT 707;":EXTERNAL:EADAPTER?
30 ENTER 707;Adapter$
40 PRINT Adapter$
50 END

15-9

External Trigger Commands
PROBe:ECoupling

PROBe:ECoupling

Command :EXTernal:PROBe:ECoupling {NONE | AC}

The :EXTernal:PROBe:ECoupling command sets the Infiniium external
coupling adapter control. There are some probes that have external coupling
adapters that you can attach to the end of your probe. When you attach one of
these adapters, you should use the ECoupling command to set the external
coupling adapter control to match the adapter connected to your probe as
follows.

Example This example sets the external coupling adapter for external trigger to ac:
10 OUTPUT 707;":EXTERNAL:PROBE:ECOUPLING AC"
20 END

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

AC Use this setting when you have an ac
coupling adapter connected to the end of
your probe.

This command is only available for the 1153A, 1154A, and 1159A probes. If one of
these probes is not connected to the external trigger you will get a Settings Conflict
error.

15-10

External Trigger Commands
PROBe:ECoupling

Query :EXTernal:PROBe:ECoupling?

The :EXTernal:PROBe:ECoupling? query returns the current external coupling
adapter value for the external trigger.

Returned Format [EXTernal:PROBe:ECoupling] {NONE | AC}<NL>

Example This example places the external coupling adapter value of the external trigger
in the string variable, Adapter$, then prints the contents of the variable to the
computer's screen.
10 DIM Adapter$[50]!Dimension variable
20 OUTPUT 707;":EXTERNAL:PROBE:ECOUPLING?
30 ENTER 707;Adapter$
40 PRINT Adapter$
50 END

15-11

External Trigger Commands
PROBe:EXTernal

PROBe:EXTernal

rmmand :EXTernal:PROBe:EXTernal {{ON|1} | {OFF|0}}

The :EXTernal:PROBe:EXTernal command sets the external probe mode to on
or off.

Example This example sets external probe mode to on.
10 OUTPUT 707;"EXTERNAL:PROBE:EXTERNAL ON"
20 END

Query :EXTernal:PROBe:EXTernal?

The :EXTernal:PROBe:EXTernal? query returns the current external probe
mode for the external trigger.

Returned Format [:EXTernal:PROBe:EXTernal] {1|0}<NL>

Example This example places the current setting of the external probe mode on the
external trigger in the variable Mode, then prints the contents of the variable
to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":EXTERNAL:PROBE:EXTERNAL?"
30 ENTER 707;Mode
40 PRINT Mode
50 END

15-12

External Trigger Commands
PROBe:EXTernal:GAIN

PROBe:EXTernal:GAIN

Command :EXTernal:PROBe:EXTernal:GAIN <gain_factor>[,{RATio
| DECibel}]

The :EXTernal:PROBe:EXTernal:GAIN command sets the probe external
scaling gain factor and, optionally, the units for the probe gain factor. The
reference factors that are used for scaling the display are changed with this
command, and affect automatic measurements and trigger levels.

The RATio or DECibel also sets the mode for the probe attenuation and also
determines the units that may be used for a subsequent command. For example,
if you select RATio mode, then the attenuation factor must be given in ratio gain
units. In DECibel mode, you can specify the units for the argument as “dB”.

<gain_factor> A real number from 0.001 to 10000 for the RATio gain units, or from −60 dB to
80 dB for the DECibel gain units.

Example This example sets the probe external scaling gain factor for the external trigger
to 10.
10 OUTPUT 707;":EXTERNAL:PROBE:EXTERNAL ON"
20 OUTPUT 707;":EXTERNAL:PROBE:EXTERNAL:GAIN 10,RATIO"
30 END

:EXTernal:PROBe:EXTernal command must be set to ON before issuing this
command or query or this command will have no effect.

15-13

External Trigger Commands
PROBe:EXTernal:GAIN

Query :EXTERNAL:PROBe:EXTernal:GAIN?

The :EXTernal:PROBe:EXTernal:GAIN? query returns the probe external gain
setting for the external trigger.

Returned Format [:EXTernal:PROBe:EXTernal:GAIN] <gain_factor><NL>

Example This example places the external gain value of the probe on the external trigger
in the variable, Gain, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":EXTERNAL:PROBE:EXTERNAL ON"
20 OUTPUT 707;":EXTERNAL:PROBE:EXTERNAL:GAIN?"
30 ENTER 707;Gain
40 PRINT Gain
50 END

15-14

External Trigger Commands
PROBe:EXTernal:UNITs

PROBe:EXTernal:UNITs

Command :EXTernal:PROBe:EXTernal:UNITs {VOLT | AMPere | WATT
| UNKNown}

The :EXTernal:PROBe:EXTernal:UNITs command sets the probe external
vertical units on the external trigger. You can specify Y-axis units of VOLTs,
AMPs, WATTs, or UNKNown. See the Probe Setup dialog box for more
information.

Example This example sets the external units for the probe on the external trigger to
amperes.
10 OUTPUT 707;":EXTERNAL:PROBE:EXTERNAL ON"
20 OUTPUT 707;":EXTERNAL:PROBE:EXTERNAL:UNITS AMPERE"
30 END

:EXTernal:PROBe:EXTernal command must be set to ON before issuing this
command or query or this command will have no effect.

15-15

External Trigger Commands
PROBe:EXTernal:UNITs

Query :EXTernal:PROBe:EXTernal:UNITs?

The :EXTernal:PROBe:EXTernal:UNITs? query returns the current external
units setting for the probe on the external trigger.

Returned Format [:EXTernal:PROBe:EXTernal:UNITs] {VOLT | AMPere | WATT |
UNKNown}<NL>

Example This example places the external vertical units for the probe on the external
trigger in the string variable, Units$, then prints the contents of the variable to
the computer's screen.
10 DIM Units$[50]
20 OUTPUT 707;":EXTERNAL:PROBE:EXTERNAL ON"
30 OUTPUT 707;":EXTERNAL:PROBE:EXTERNAL:UNITS?"
40 ENTER 707;Units$
50 PRINT Units$
60 END

15-16

PROBe:GAIN

Command :EXTernal:PROBe:GAIN {X1 | X10}

The :EXTernal:PROBe:GAIN command sets the probe gain. The1154A probe
has the ability to change the probe’s input amplifier gain.

The units of volts, amperes, watts, and unknown are set using the
:EXTernal:UNITs command.

Example This example sets the probe gain to times 10.
10 OUTPUT 707;":EXTERNAL:PROBE:GAIN X10"
20 END

Query :EXTernal:PROBe:GAIN?

The :EXTernal:PROBe:GAIN? query returns the probe gain setting.

Returned Format [:EXTernal:PROBe:GAIN] {X1 | X10}<NL>

This command is only available for the 1154A probe. If one of these probes is not
connected to the external trigger you will get a settings conflict error.

15-17

External Trigger Commands
PROBe:ID?

PROBe:ID?

Query :EXTernal:PROBe:ID?

The :EXTernal:PROBe:ID? query returns the type of probe attached to the
external trigger input.

Returned Format [:EXTernal:PROBe:ID] <probe_id>

<probe_id> A string of up to 9 alphanumeric characters. Some of the possible returned
values are:

• 1131A

• 1132A

• 1134A

• 1147A

• 1154A

• 1156A

• 1157A

• 1158A

• 1159A

• 1165A

• AutoProbe

• E2621A

• E2622A

• E2695A

• E2697A

• HP1152A

• HP1153A

• NONE

• Probe

• Unknown

Example This example reports the probe type connected to external trigger, if one is
connected.
10 OUTPUT 707;":EXTernal:PROBE:ID?"
20 END

15-18

External Trigger Commands
PROBe:SKEW

PROBe:SKEW

Command :EXTernal:PROBe:SKEW <skew_value>

The :EXTernal:PROBe:SKEW command sets the value of the External Trigger
probe skew.

<skew_value> A real number from -100E-6 to 100E-6.

Example This example sets the external probe skew to 10 microseconds.
10 OUTPUT 707;":EXTERNAL:PROBE:SKEW 10E-6"
20 END

Query :EXTernal:PROBe:SKEW?

The :EXTernal:PROBe:SKEW? query returns the current skew setting for the
external trigger.

Returned Format [:EXTernal:PROBe:SKEW] <skew_value><NL>

See Also For information on skew, see the Calibration Commands chapter.

15-19

External Trigger Commands
RANGe

RANGe

Command :EXTernal:RANGe <range_value>

The :EXTernal:RANGe command defines the vertical axis of the external
trigger. The value represents the full-scale deflection of the vertical axis in
volts. This value changes as the probe attenuation factor is changed. If you
change the probe attenuation, the range value is multiplied by the probe
attenuation factor.

<range_value> Voltage setting of 1, 5, or 25, corresponding to ±1V, ±5V, or ±25V for 50 Ω
impedance and 1, 5, or 8, coressponding to ±1V, ±5V, or ±8V for 1 MΩ
impedance.

Example This example sets the vertical range for the external trigger to ±5V.
10 OUTPUT 707;":EXTERNAL:RANGE 5"
20 END

Query :EXTernal:RANGe?

The :EXTernal:RANGe? query returns the current vertical axis setting for the
external trigger.

Returned Format [:EXTernal:RANGe]<range value><NL>

Example This example places the current range value in the number variable, Setting,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”!Response headers off
20 OUTPUT 707;":EXTERNAL:RANGE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

15-20

External Trigger Commands
UNITs

UNITs

Command :EXTernal:UNITs {VOLT | AMPere | WATT | UNKNown}

The :EXTernal:UNITs command sets the vertical units. You can specify Y-axis
units of VOLTS, AMPS, WATTs, or UNKNown. The units are implied for other
pertinent external trigger commands (such as RANGe). See the Probe Setup
dialog box for more information. See also :EXTernal:PROBe:EXTernal and
:EXTernal:PROBe:UNITs commands.

Example This example sets the units for the external trigger to amperes.
10 OUTPUT 707;":EXTERNAL:UNITS AMPERE"
20 END

Query :EXTernal:UNITs?

The :EXTernal:UNITs? query returns the current units setting for the external
trigger.

Returned Format [:EXTernal:UNITs] {VOLT | AMPere | WATT | UNKNown}<NL>

Example This example places the vertical units for the external trigger in the string
variable, Units$, then prints the contents of the variable to the computer's
screen.
10 DIM Units$[50]
20 OUTPUT 707;"EXTERNAL:UNITS?"
30 ENTER 707;Units$
40 PRINT Units$
50 END

16

Function Commands

16-2

Function Commands

The FUNCtion subsystem defines functions 1 - 4. The operands of these
functions can be any of the installed channels in the oscilloscope,
waveform memories 1 - 4, functions 1 - 4, or a constant. These FUNCtion
commands and queries are implemented in the Infiniium Oscilloscopes:

You can control the vertical scaling and offset functions remotely using
the RANGe and OFFSet commands in this subsystem. You can obtain
the horizontal scaling and position values of the functions using the
:HORizontal:RANge? and :HORizontal:POSition? queries in this
subsystem.

If a channel is not on but is used as an operand, that channel will acquire
waveform data.

If the operand waveforms have different memory depths, the function
uses the shorter of the two.

If the two operands have the same time scales, the resulting function has
the same time scale. If the operands have different time scales, the

• FUNCtion<N>?

• ADD
• AVERage
• COMMonmode
• DIFF (Differentiate)
• DISPlay
• DIVide
• FFT:FREQuency
• FFT:RESolution?
• FFT:WINDow
• FFTMagnitude
• FFTPhase
• HIGHpass
• HORizontal
• HORizontal:POSition

• HORizontal:RANGe
• INTegrate
• INVert
• LOWPass
• MAGNify
• MAXimum
• MINimum
• MULTiply
• OFFSet
• RANGe
• SUBTract
• VERSus
• VERTical
• VERTical:OFFset
• VERTical:RANGe

16-3

resulting function has no valid time scale. This is because operations are
performed based on the displayed waveform data position, and the time
relationship of the data records cannot be considered. When the time
scale is not valid, delta time pulse parameter measurements have no
meaning, and the unknown result indicator is displayed on the screen.

Constant operands take on the same time scale as the associated
waveform operand.

16-4

Function Commands
FUNCtion<N>?

FUNCtion<N>?

Query :FUNCtion<N>?

The :FUNCtion<N>? query returns the currently defined source(s) for the
function.

Returned Format [:FUNCtion<N>:<operator>] {<operand>,[,<operand>]}<NL>

<N> An integer, 1 - 4, representing the selected function.

<operator> Active math operation for the selected function: ADD, AVERage,
COMMonmode, DIFF, DIVide, FFTMagnitude, FFTPhase, HIGHpass,
INTegrate, INVert, LOWPass, MAGNify, MAXimum, MINimum, MULTiply,
SMOoth, SUBTract, or VERSus.

<operand> Any allowable source for the selected FUNCtion, including channels, waveform
memories 1-4, and functions 1-4. If the function is applied to a constant, the
source returns the constant.

The channel number is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example returns the currently defined source for function 1.
10 OUTPUT 707;":FUNCTION1?"
20 END

If the headers are off (see :SYSTem:HEADer), the query returns only the
operands, not the operator.
10 :SYST:HEAD ON
20 :FUNC1:ADD CHAN1,CHAN2
30 :FUNC1? !returns :FUNC1:ADD CHAN1,CHAN2
40 :SYST:HEAD OFF
50 :FUNC1? !returns CHAN1,CHAN2

16-5

Function Commands
ADD

ADD

Command :FUNCtion<N>:ADD <operand>,<operand>

The :FUNCtion<N>:ADD command defines a function that takes the algebraic
sum of the two operands.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 1 to add channel 1 to channel 2.
10 OUTPUT 707;":FUNCTION1:ADD CHANNEL1,CHANNEL2"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-6

Function Commands
AVERage

AVERage

Command :FUNCtion<N>:AVERage <operand>[,<averages>]

The :FUNCtion<N>:AVERage command defines a function that averages the
operand based on the number of specified averages.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6

<averages> An integer, 2 to 4096 specifing the number of waveforms to be averaged

Example This example sets up function 1 to average channel 1 using 16 averages.
10 OUTPUT 707;":FUNCTION1:AVERAGE CHANNEL1,16"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-7

Function Commands
COMMonmode

COMMonmode

Command :FUNCtion<N>:COMMonmode <operand>,<operand>

The :FUNCtion<N>:COMMonmode command defines a function that adds the
voltage values of the two operands and divides by 2, point by point.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is an integer, 1 - 4.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 1 to view the commonmode voltage value of
channel 1 and channel 2.
10 OUTPUT 707;":FUNCTION1:COMMONMODE CHANNEL1,CHANNEL2"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-8

Function Commands
DIFF (Differentiate)

DIFF (Differentiate)

Command :FUNCtion<N>:DIFF <operand>

The :FUNCtion<N>:DIFF command defines a function that computes the
discrete derivative of the operand.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 2 to take the discrete derivative of the waveform
on channel 2.
10 OUTPUT 707;":FUNCTION2:DIFF CHANNEL2"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-9

Function Commands
DISPlay

DISPlay

Command :FUNCtion<N>:DISPlay {{ON|1} | {OFF|0}}

The :FUNCtion<N>:DISPlay command either displays the selected function or
removes it from the display.

<N> An integer, 1 - 4, representing the selected function.

Example This example turns function 1 on.
10 OUTPUT 707;":FUNCTION1:DISPLAY ON"
20 END

Query :FUNCtion<N>:DISPlay?

The :FUNCtion<N>:DISPlay? query returns the displayed status of the specified
function.

Returned Format [:FUNCtion<N>:DISPlay] {1|0}<NL>

Example This example places the current state of function 1 in the variable, Setting, then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":FUNCTION1:DISPLAY?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

16-10

Function Commands
DIVide

DIVide

Command :FUNCtion<N>:DIVide <operand>,<operand>

The :FUNCtion<N>:DIVide command defines a function that divides the first
operand by the second operand.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is: A real number from -1E6 to 1E6.

Example This example sets up function 2 to divide the waveform on channel 1 by the
waveform in waveform memory 4.
10 OUTPUT 707;":FUNCTION2:DIVIDE CHANNEL1,WMEMORY4"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-11

Function Commands
FFT:FREQuency

FFT:FREQuency

Command :FUNCtion<N>:FFT:FREQuency <center_frequency_value>

The :FUNCtion<N>:FFT:FREQuency command sets the center frequency for
the FFT when :FUNCtion<N>:FFTMagnitude is defined for the selected
function.

<N> An integer, 1 - 4, representing the selected function.

<center
_frequency

_value> A real number for the value in Hertz, from -1E12 to 1E12.

Query :FUNCtion<N>:FFT:FREQuency?

The :FUNCtion<N>:FFT:FREQuency? query returns the center frequency
value.

Returned Format [FUNCtion<N>:FFT:FREQuency] <center_frequency_value><NL>

16-12

Function Commands
FFT:RESolution?

FFT:RESolution?

Query :FUNCtion<N>:FFT:RESolution?

The :FUNCtion<N>:FFT:RESolution? query returns the current resolution of
the FFT function.

Returned Format [FUNCtion<N>:FFT:RESolution] <resolution_value><NL>

<N> An integer from 1 to 4 representing the selected function.

<resolution
_value> Resolution frequency.

The FFT resolution is determined by the sample rate and memory depth
settings. The FFT resolution is calculated using the following equation:

FFT Resolution = Sample Rate / Effective Memory Depth

The effective memory depth is the highest power of 2 less than or equal to the
number of sample points across the display. The memory bar in the status area
at the top of the display indicates how much of the actual memory depth is
across the display.

16-13

Function Commands
FFT:WINDow

FFT:WINDow

Command :FUNCtion<N>:FFT:WINDow {RECTangular | HANNing |
FLATtop}

The :FUNCtion<N>:FFT:WINDow command sets the window type for the FFT
function.

The FFT function assumes that the time record repeats. Unless there is an
integral number of cycles of the sampled waveform in the record, a discontinuity
is created at the beginning of the record. This introduces additional frequency
components into the spectrum about the actual peaks, which is referred to as
spectral leakage. To minimize spectral leakage, windows that approach zero
smoothly at the beginning and end of the record are employed as filters to the
FFTs. Each window is useful for certain classes of input waveforms.

• The RECTangular window is essentially no window, and all points are
multiplied by 1. This window is useful for transient waveforms and
waveforms where there are an integral number of cycles in the time record.

• The HANNing window is useful for frequency resolution and general purpose
use. It is good for resolving two frequencies that are close together, or for
making frequency measurements.

• The FLATtop window is best for making accurate amplitude measurements
of frequency peaks.

<N> An integer, 1 - 4, representing the selected function. This command presently
selects all functions, regardless of which integer (1-4) is passed.

Example This example sets the window type for the FFT function to RECTangular.
10 OUTPUT 707;":FUNCTION<N>:FFT:WINDOW RECTANGULAR
20 END

16-14

Function Commands
FFT:WINDow

Query :FUNCtion<N>:FFT:WINDow?

The :FUNCtion<N>:FFT:WINDow? query returns the current selected window
for the FFT function.

Returned Format [:FUNCtion<N>:FFT:WINDow] {RECTangular | HANNing |
FLATtop}<NL>

Example This example places the current state of the function 1 FFT window in the string
variable, WND?, then prints the contents of the variable to the computer's
screen.
10 DIM WND$[50]
20 OUTPUT 707;":FUNCTION1:FFT:WINDOW?"
30 ENTER 707;WND$
40 PRINT WND$
50 END

16-15

Function Commands
FFTMagnitude

FFTMagnitude

Command :FUNCtion<N>:FFTMagnitude <operand>

The :FUNCtion<N>:FFTMagnitude command computes the Fast Fourier
Transform (FFT) of the specified channel, function, or memory. The FFT takes
the digitized time record and transforms it to magnitude and phase components
as a function of frequency.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 1 to compute the FFT of waveform memory 3.
10 OUTPUT 707;":FUNCTION1:FFTMAGNITUDE WMEMORY3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-16

Function Commands
FFTPhase

FFTPhase

Command :FUNCtion<N>:FFTPhase <source>

The :FUNCtion<N>:FFTPhase command computes the Fast Fourier Transform
(FFT) of the specified channel, function, or waveform memory. The FFT takes
the digitized time record and transforms it into magnitude and phase
components as a function of frequency.

<N> An integer, 1 - 4, representing the selected function.

<source> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 1 to compute the FFT of waveform memory 3.
10 OUTPUT 707;":FUNCTION1:FFTPHASE WMEMORY3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-17

Function Commands
FFTPhase

FFTPhase

Command :FUNCtion<N>:FFTPhase <source>

The :FUNCtion<N>:FFTPhase command computes the Fast Fourier Transform
(FFT) of the specified channel, function, or waveform memory. The FFT takes
the digitized time record and transforms it into magnitude and phase
components as a function of frequency.

<N> An integer, 1 - 4, representing the selected function.

<source> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 1 to compute the FFT of waveform memory 3.
10 OUTPUT 707;":FUNCTION1:FFTPHASE WMEMORY3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-18

Function Commands
HIGHpass

HIGHpass

Command :FUNCtion<N>:HIGHpass <operand>,<bandwidth>

The :FUNCtion<N>:HIGHpass command applies a single-pole high pass filter to
the operand waveform. The bandwidth that you set is the 3 dB bandwidth of
the filter.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<bandwidth> A real number in the range of 50 to 50E9.

Query :FUNCtion<N>:HIGHpass?

The :FUNCtion<N>:HIGHpass? query returns the operand and the bandwith of
the specified function.

Returned Format [:FUNCtion<N>:HIGHpass] <operand>,<bandwidth><NL>

Example This example places the current state of the function 1 high pass filter in the
string variable, Setting$, then prints the contents of the variable to the
computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":FUNCTION1:HIGHPASS?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

16-19

Function Commands
HORizontal:POSition

HORizontal:POSition

Command :FUNCtion<N>:HORizontal:POSition <position_value>

The :FUNCtion<N>:HORizontal:POSition command sets the time value at
center screen for the selected function. If the oscilloscope is not already in
manual mode when you execute this command, it puts the oscilloscope in
manual mode.

When you select :FUNCtion<N>:FFTMagnitude, the horizontal position is
equivalent to the center frequency. This also automatically selects manual
mode.

<N> An integer, 1 - 4, representing the selected function.

<position
_value> A real number for the position value in time, in seconds, from -1E12 to 1E12.

Query :FUNCtion<N>:HORizontal:POSition?

The :FUNCtion<N>:HORizontal:POSition? query returns the current time value
at center screen of the selected function.

Returned Format [:FUNCtion<N>:HORizontal:POSition] <position><NL>

Example This example places the current horizontal position setting for function 2 in the
numeric variable, Value, then prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:HORIZONTAL:POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-20

Function Commands
HORizontal:RANGe

HORizontal:RANGe

Command :FUNCtion<N>:HORizontal:RANGe <range_value>

The :FUNCtion<N>:HORizontal:RANGe command sets the current time range
for the specified function. This automatically selects manual mode.

<N> An integer, 1 - 4, representing the selected function.

<range_value> A real number for the width of screen in current X-axis units (usually seconds),
from 1E-12 to 50E12.

Query :FUNCtion<N>:HORizontal:RANGe?

The :FUNCtion<N>:HORizontal:RANGe? query returns the current time range
setting of the specified function.

Returned Format [:FUNCtion<N>:HORizontal:RANGe] <range><NL>

Example This example places the current horizontal range setting of function 2 in the
numeric variable, Value, then prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:HORIZONTAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-21

Function Commands
INTegrate

INTegrate

Command :FUNCtion<N>:INTegrate <operand>

The :FUNCtion<N>:INTegrate command defines a function that computes the
integral of the specified operand's waveform.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 1 to compute the integral of
waveform memory 3.
10 OUTPUT 707;":FUNCTION1:INTEGRATE WMEMORY3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-22

Function Commands
INVert

INVert

Command :FUNCtion<N>:INVert <operand>

The :FUNCtion<N>:INVert command defines a function that inverts the defined
operand's waveform by multiplying by -1.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 2 to invert the waveform on channel 1.
10 OUTPUT 707;":FUNCTION2:INVERT CHANNEL1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-23

Function Commands
LOWPass

LOWPass

Command :FUNCtion<N>:LOWPass <operand>,<bandwidth>

The :FUNCtion<N>:LOWPass command applies a 4th order Bessel-Thompson
pass filter to the operand waveform. The bandwidth that you set is the 3 dB
bandwidth of the filter.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<bandwidth> A real number in the range of 50 to 50E9.

Query :FUNCtion<N>:LOWPass?

The :FUNCtion<N>:LOWPass? query returns the operand and the bandwith of
the specified function.

Returned Format [:FUNCtion<N>:LOWPass] <operand>,<bandwidth><NL>

Example This example places the current state of the function 1 low pass filter in the
string variable, Setting$, then prints the contents of the variable to the
computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":FUNCTION1:LOWPASS?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

16-24

Function Commands
MAGNify

MAGNify

Command :FUNCtion<N>:MAGNify <operand>

The :FUNCtion<N>:MAGNify command defines a function that is a copy of the
operand. The magnify function is a software magnify. No hardware settings
are altered as a result of using this function. It is useful for scaling channels,
another function, or memories with the RANGe and OFFSet commands in this
subsystem.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example creates a function (function 1) that is a magnified version of
channel 1.
10 OUTPUT 707;":FUNCTION1:MAGNIFY CHANNEL1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-25

Function Commands
MAXimum

MAXimum

Command :FUNCtion<N>:MAXimum <operand>

The :FUNCtion<N>:MAXmum command defines a function that computes the
maximum of each time bucket for the defined operand's waveform.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is an integer, 1 - 4.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 2 to compute the maxmum of each time bucket
for channel 4.
10 OUTPUT 707;":FUNCTION2:MAXIMUM CHANNEL4"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-26

Function Commands
MAXimum

MAXimum

Command :FUNCtion<N>:MAXimum <operand>

The :FUNCtion<N>:MAXimum command defines a function that computes the
maximum value of the operand waveform in each time bucket.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 2 to compute the maximum of each time bucket
for channel 2.
10 OUTPUT 707;":FUNCTION2:MAXIMUM CHANNEL2"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-27

Function Commands
MINimum

MINimum

Command :FUNCtion<N>:MINimum <operand>

The :FUNCtion<N>:MINimum command defines a function that computes the
minimum of each time bucket for the defined operand's waveform.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example sets up function 2 to compute the minimum of each time bucket
for channel 4.
10 OUTPUT 707;":FUNCTION2:MINIMUM CHANNEL4"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-28

Function Commands
MULTiply

MULTiply

Command :FUNCtion<N>:MULTiply <operand>,<operand>

The :FUNCtion<N>:MULTiply command defines a function that algebraically
multiplies the first operand by the second operand.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example defines a function that multiplies channel 1 by waveform
memory 1.
10 OUTPUT 707;":FUNCTION1:MULTIPLY CHANNEL1,WMEMORY1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-29

Function Commands
OFFSet

OFFSet

Command :FUNCtion<N>:OFFSet <offset_value>

The :FUNCtion<N>:OFFSet command sets the voltage represented at the
center of the screen for the selected function. This automatically changes the
mode from auto to manual.

<N> An integer, 1 - 4, representing the selected function.

<offset_value> A real number for the vertical offset in the currently selected Y-axis units
(normally volts). The offset value is limited to being within the vertical range
that can be represented by the function data.

Example This example sets the offset voltage for function 1 to 2 mV.
10 OUTPUT 707;":FUNCTION1:OFFSET 2E-3"
20 END

Query :FUNCtion<N>:OFFSet?

The :FUNCtion<N>:OFFSet? query returns the current offset value for the
selected function.

Returned Format [:FUNCtion<N>:OFFSet] <offset_value><NL>

Example This example places the current setting for offset on function 2 in the numeric
variable, Value, then prints the result to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-30

Function Commands
RANGe

RANGe

Command :FUNCtion<N>:RANGe <full_scale_range>

The :FUNCtion<N>:RANGe command defines the full-scale vertical axis of the
selected function. This automatically changes the mode from auto to manual.

<N> An integer, 1 - 4, representing the selected function.

<full_scale
_range> A real number for the full-scale vertical range, from 100E-18 to 10E15.

Example This example sets the full-scale range for function 1 to 400 mV.
10 OUTPUT 707;":FUNCTION1:RANGE 400E-3"
20 END

Query :FUNCtion<N>:RANGe?

The :FUNCtion<N>:RANGe? query returns the current full-scale range setting
for the specified function.

Returned Format [:FUNCtion<N>:RANGe] <full_scale_range><NL>

Example This example places the current range setting for function 2 in the numeric
variable “Value,” then prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-31

Function Commands
SMOoth

SMOoth

Command :FUNCtion<N>:SMOoth <operand>[,<points>]

The :FUNCtion<N>:SMOoth command defines a function that assigns the
smoothing operator to the operand with the number of specified smoothing
points.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is an integer, 1 - 4.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6

<points> An integer, odd numbers from 3 to 4001 specifing the number of smoothing
points.

Example This example sets up function 1 using assigning smoothing operator to channel
1 using 5 smoothing points.
10 OUTPUT 707;":FUNCTION1:SMOOTH CHANNEL1,5"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-32

Function Commands
SUBTract

SUBTract

Command :FUNCtion<N>:SUBTract <operand>,<operand>

The :FUNCtion<N>:SUBTract command defines a function that algebraically
subtracts the second operand from the first operand.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example defines a function that subtracts waveform memory 1 from
channel 1.
10 OUTPUT 707;":FUNCTION1:SUBTRACT CHANNEL1,WMEMORY1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-33

Function Commands
VERSus

VERSus

Command :FUNCtion<N>:VERSus <operand>,<operand>

The :FUNCtion<N>:VERSus command defines a function for an X-versus-Y
display. The first operand defines the Y axis and the second defines the X axis.
The Y-axis range and offset are initially equal to that of the first operand, and
you can adjust them with the RANGe and OFFSet commands in this subsystem.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<float_value> is:

A real number from -1E6 to 1E6.

Example This example defines function 1 as an X-versus-Y display. Channel 1 is the X
axis and waveform memory 2 is the Y axis.
10 OUTPUT 707;":FUNCTION1:VERSUS WMEMORY2,CHANNEL1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-34

Function Commands
VERTical

VERTical

Command :FUNCtion<N>:VERTical {AUTO | MANual}

The :FUNCtion<N>:VERTical command sets the vertical scaling mode of the
specified function to either AUTO or MANual.

This command also contains the following commands and queries:

• OFFset

• RANge

<N> An integer, 1 - 4, representing the selected function.

Query :FUNCtion<N>:VERTical?

The :FUNCtion<N>:VERTical? query returns the current vertical scaling mode
of the specified function.

Returned Format [:FUNCtion<N>:VERTical] {AUTO | MANual}<NL>

Example This example places the current state of the vertical tracking of function 1 in
the string variable, Setting$, then prints the contents of the variable to the
computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":FUNCTION1:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

16-35

Function Commands
VERTical:OFFSet

VERTical:OFFSet

Command :FUNCtion<N>:VERTical:OFFSet <offset_value>

The :FUNCtion<N>:VERTical:OFFSet command sets the voltage represented
at center screen for the selected function. This automatically changes the mode
from auto to manual.

<N> An integer, 1 - 4, representing the selected function.

<offset_value> A real number for the vertical offset in the currently selected Y-axis units
(normally volts). The offset value is limited only to being within the vertical
range that can be represented by the function data.

Query :FUNCtion<N>:VERTical:OFFset?

The :FUNCtion<N>:VERTical:OFFSet? query returns the current offset value
of the selected function.

Returned Format [:FUNCtion<N>:VERTical:OFFset] <offset_value><NL>

Example This example places the current offset setting for function 2 in the numeric
variable, Value, then prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:VERTICAL:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-36

Function Commands
VERTical:RANGe

VERTical:RANGe

Command :FUNCtion<N>:VERTical:RANGe <full_scale_range>

The :FUNCtion<N>:VERTical:RANGe command defines the full-scale vertical
axis of the selected function. This automatically changes the mode from auto
to manual, if the oscilloscope is not already in manual mode.

<N> An integer, 1 - 4, representing the selected function.

<full_scale
_range> A real number for the full-scale vertical range, from 100E-18 to 10E15.

Query :FUNCtion<N>:VERTical:RANGe?

The :FUNCtion<N>:VERTical:RANGe? query returns the current range setting
of the specified function.

Returned Format [:FUNCtion<N>:VERTical:RANGe] <range><NL>

Example This example places the current vertical range setting of function 2 in the
numeric variable, Value, then prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:VERTICAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

17

Hardcopy Commands

17-2

Hardcopy Commands

The HARDcopy subsystem commands set various parameters for
printing the screen. The print sequence is activated when the root level
command :PRINt is sent.

These HARDcopy commands and queries are implemented in the
Infiniium Oscilloscopes:

• AREA
• DPRinter
• FACTors
• IMAGe
• PRINTers?

17-3

Hardcopy Commands
AREA

AREA

Command :HARDcopy:AREA {GRATicule | SCReen}

The :HARDcopy:AREA command selects which data from the screen is to be
printed. When you select GRATicule, only the graticule area of the screen is
printed (this is the same as choosing Waveforms Only in the Configure Printer
dialog box). When you select SCReen, the entire screen is printed.

Example This example selects the graticule for printing.
10 OUTPUT 707;":HARDCOPY:AREA GRATICULE"
20 END

Query :HARDcopy:AREA?

The :HARDcopy:AREA? query returns the current setting for the area of the
screen to be printed.

Returned Format [:HARDcopy:AREA] {GRATicule | SCReen}<NL>

Example This example places the current selection for the area to be printed in the string
variable, Selection$, then prints the contents of the variable to the computer's
screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":HARDCOPY:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

17-4

Hardcopy Commands
DPRinter

DPRinter

Command :HARDcopy:DPRinter
{<printer_number>|<printer_string>}

The :HARDcopy:DPRinter command selects the default printer to be used.

<printer
_number>

An integer representing the attached printer. This number corresponds to the
number returned with each printer name by the :HARDcopy:PRINters? query.

<printer
_string>

A string of alphanumeric characters representing the attached printer.

The :HARDcopy:DPRinter command specifies a number or string for the printer
attached to the oscilloscope. The printer string must exactly match the
character strings in the File->Print Setup dialog boxes, or the strings returned
by the :HARDcopy:PRINters? query.

Examples This example sets the default printer to the second installed printer returned
by the :HARDcopy:PRINters? query.
10 OUTPUT 707;":HARDCOPY:DPRINTER 2"
20 END

This example sets the default printer to the installed printer with the name
"HP Laser".
10 OUTPUT 707;":HARDCOPY:DPRINTER ""HP Laser"""
20 END

17-5

Hardcopy Commands
DPRinter

Query :HARDcopy:DPRinter?

The :HARDcopy:DPRinter? query returns the current printer number and
string.

Returned Format [:HARDcopy:DPRinter?]
{<printer_number>,<printer_string>,DEFAULT}<NL>

Or, if there is no default printer (no printers are installed), only a <NL> is
returned.

Example This example places the current setting for the hard copy printer in the string
variable, Setting$, then prints the contents of the variable to the computer's
screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":HARDCOPY:DPRinter?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

Programs Must Wait After Changing the Default Printer
It takes several seconds to change the default printer. Any programs that try to set
the default printer must wait (10 seconds is a safe amount of time) for the change to
complete before sending other commands. Otherwise, the oscilloscope will become
unresponsive.

17-6

Hardcopy Commands
FACTors

FACTors

Command :HARDcopy:FACTors {{ON|1} | {OFF|0}}

The :HARDcopy:FACTors command determines whether the oscilloscope setup
factors will be appended to screen or graticule images. FACTors ON is the same
as choosing Include Setup Information in the Configure Printer dialog box.

Example This example turns on the setup factors.
10 OUTPUT 707;":HARDCOPY:FACTORS ON"
20 END

Query :HARDcopy:FACTors?

The :HARDcopy:FACTors? query returns the current setup factors setting.

Returned Format [:HARDcopy:FACTors] {1|0}<NL>

Example This example places the current setting for the setup factors in the string
variable, Setting$, then prints the contents of the variable to the computer's
screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":HARDCOPY:FACTORS?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

17-7

Hardcopy Commands
IMAGe

IMAGe

Command :HARDcopy:IMAGe {NORMal | INVert}

The :HARDcopy:IMAGe command prints the image normally, inverted, or in
monochrome. IMAGe INVert is the same as choosing Invert Waveform Colors
in the Configure Printer dialog box.

Example This example sets the hard copy image output to normal.
10 OUTPUT 707;":HARDCOPY:IMAGE NORMAL"
20 END

Query :HARDcopy:IMAGe?

The :HARDcopy:IMAGe? query returns the current image setting.

Returned Format [:HARDcopy:IMAGe] {NORMal | INVert}<NL>

Example This example places the current setting for the hard copy image in the string
variable, Setting$, then prints the contents of the variable to the computer's
screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":HARDCOPY:IMAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

17-8

Hardcopy Commands
PRINters?

PRINters?

Query :HARDcopy:PRINters?

The :HARDcopy:PRINters? query returns the currently available printers.

Returned Format [:HARDcopy:PRINters?]
<printer_count><NL><printer_data><NL>[,<printer_data><NL>]

<printer_count> The number of printers currently installed.

<printer
_data>

The printer number and the name of an installed printer. The word DEFAULT
appears next to the printer that is the currently selected default printer.

The <printer_data> return string has the following format:
<printer_number>,<printer_string>{,DEFAULT}

Example This example places the number of installed printers into the variable Count,
loops through it that number of times, and prints the installed printer names to
the computer’s screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":HARDCOPY:PRINTERS?"
30 ENTER 707;Count
40 IF Count>0 THEN
50 FOR Printer_number=1 TO Count
60 ENTER 707;Setting$
70 PRINT Setting$
80 NEXT Printer_number
90 END IF
100 END

18

Histogram Commands

18-2

Histogram Commands

The HISTogram commands and queries control the histogram features.
A histogram is a probability distribution that shows the distribution of
acquired data within a user-definable histogram window.

You can display the histogram either vertically, for voltage
measurements, or horizontally, for timing measurements.

The most common use for histograms is measuring and characterizing
noise or jitter on displayed waveforms. Noise is measured by sizing the
histogram window to a narrow portion of time and observing a veritcal
histogram that measures the noise on a waveform. Jitter is measured by
sizing the histogram window to a narrow portion of voltage and observing
a horizontal histogram that measures the jitter on an edge.

These HISTogram commands and queries are implemented in the
Infiniium Oscilloscopes:

• AXIS
• MODE
• SCALe:SIZE
• WINDow:DEFault
• WINDow:SOURce
• WINDow:X1Position|LLIMit
• WINDow:X2Position|RLIMit
• WINDow:Y1Position|BLIMit
• WINDow:Y2Position|TLIMit

Histograms and the
database

The histograms, mask testing, and color grade persistence use a specific
database that uses a different memory area from the waveform record
for each channel. When any of these features are turned on, the
oscilloscope starts building the database. The database is the size of the
graticule area. Behind each pixel is a 21-bit counter that is incremented
each time data from a channel or function hits a pixel. The maximum
count (saturation) for each counter is 2,097,151. You can use the
DISPlay:CGRade:LEVels command to see if any of the counters are close
to saturation.

Histogram Commands

18-3

The database continues to build until the oscilloscope stops acquiring
data or all both features (color grade persistence and histograms) are
turned off. You can clear the database by turning off all three features
that use the database.

The database does not differentiate waveforms from different
channels or functions. If three channels are on and the waveform from
each channel happens to light the same pixel at the same time, the
counter is incremented by three. However, it is not possible to tell
how many hits came from each waveform. To separate waveforms,
you can position the waveforms vertically with the channel offset. By
separating the waveforms, you can avoid overlapping data in the
database caused by multiple waveforms. Even if the display is set to
show only the most recent acquisition, the database keeps track of all
pixel hits while the database is building.

Remember that color grade persistence, mask testing, and histograms
all use the same database. Suppose that the database is building
because color grade persistence is ON; when mask testing or
histograms are turned on, they can use the information already
established in the database as though they had been turned on the
entire time.

To avoid erroneous data, clear the display after you change
oscilloscope setup conditions or DUT conditions and acquire new data
before extracting measurement results.

18-4

Histogram Commands
AXIS

AXIS

Command :HISTogram:AXIS {VERTical | HORizontal}

The :HISTogram:AXIS command selects the type of histogram. A horizontal
histogram can be used to measure time related information like jitter. A vertical
histogram can be used to measure voltage related information like noise.

Example This example defines a vertical histogram.
10 OUTPUT 707;":HISTOGRAM:AXIS VERTICAL"
20 END

Query :HISTogram:AXIS?

The :HISTogram:AXIS? query returns the currently selected histogram type.

Returned Format [:HISTogram:AXIS] {VERTical | HORizontal}<NL>

Example This example returns the histogram type and prints it to the computer’s screen.
10 DIM Axis$[50]
20 OUTPUT 707;":HISTOGRAM:AXIS?"
30 ENTER 707;Axis$
40 PRINT Axis$
50 END

18-5

Histogram Commands
MODE

MODE

Command :HISTogram:MODE {OFF | WAVeforms | MEASurement}

The :HISTogram:MODE command selects the histogram mode. The histogram
may be off or set to track the waveforms or measurements.

Example This example sets the histogram mode to track the waveforms.
10 OUTPUT 707;":HISTOGRAM:MODE WAVEFORM"
20 END

Query :HISTogram:MODE?

The :HISTogram:MODE? query returns the currently selected histogram mode.

Returned Format [:HISTogram:MODE] {OFF | WAVeform | MEASurement}<NL>

Example This example returns the result of the mode query and prints it to the
computer’s screen.
10 DIM Mode$[10]
20 OUTPUT 707;":HISTOGRAM:MODE?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

18-6

Histogram Commands
SCALe:SIZE

SCALe:SIZE

Command :HISTogram:SCALe:SIZE <size>

The :HISTogram:SCALe:SIZE command sets histogram size for vertical and
horizontal mode.

<size> The size is from 1.0 to 8.0 for the horizontal mode and from 1.0 to 10.0 for the
vertical mode.

Example This example sets the histogram size to 3.5.
10 OUTPUT 707;":HISTOGRAM:SCALE:SIZE 3.5"
20 END

Query :HISTogram:SCALe:SIZE?

The :HISTogram:SCALe:SIZE? query returns the correct size of the histogram.

Returned Format [:HISTogram:SCALe:SIZE] <size><NL>

Example This example returns the result of the size query and prints it to the computer’s
screen.
10 DIM Size$[50]
20 OUTPUT 707;":HISTOGRAM:SCALE:SIZE?"
30 ENTER 707;Size$
40 PRINT Size$
50 END

18-7

Histogram Commands
WINDow:DEFault

WINDow:DEFault

Command :HISTogram:WINDow:DEFault

The :HISTogram:WINDow:DEFault command positions the histogram markers
to a default location on the display. Each marker will be positioned one division
off the left, right, top, and bottom of the display.

Example This example sets the histogram window to the default position.
10 OUTPUT 707;":HISTOGRAM:WINDOW:DEFAULT"
20 END

18-8

Histogram Commands
WINDow:SOURce

WINDow:SOURce

Command :HISTogram:WINDow:SOURce {CHANnel<N> | FUNCtion<N>
| WMEMory<N>}

The :HISTogram:WINDow:SOURce command selects the source of the
histogram window. The histogram window will track the source’s vertical and
horizontal scale.

<N> For channels: the number represents an integer, 1 through 4.

For waveform memories: 1, 2, 3, or 4.

For functions: 1 or 2

Example This example sets the histogram window’s source to Channel 1.
10 OUTPUT 707;":HISTOGRAM:WINDOW:SOURCE CHANNEL1"
20 END

Query :HISTogram:WINDow:SOURce?

The :HISTogram:WINDow:SOURce? query returns the currently selected
histogram window source.

Returned Format [:HISTogram:WINDow:SOURce] {CHANnelN | FUNCtionN |
WMEMoryN}<NL>

Example This example returns the result of the window source query and prints it to the
computer’s screen.
10 DIM Winsour$[50]
20 OUTPUT 707;":HISTOGRAM:WINDOW:SOURCE?"
30 ENTER 707;Winsour$
40 PRINT Winsour$
50 END

18-9

Histogram Commands
WINDow:X1Position | LLIMit

WINDow:X1Position | LLIMit

Command :HISTogram:WINDow:X1Position <x1_position>

or

:HISTogram:WINDow:LLIMit <x1_position>

The :HISTogram:WINDow:X1Position command moves the X1 marker (left
limit) of the histogram window. The histogram window determines the portion
of the display used to build the database for the histogram. The histogram
window markers will track the scale of the histogram window source.

<x1_position> A real number that represents the left boundary of the histogram window.

Example This example sets the X1 position to -200 microseconds.
10 OUTPUT 707;":HISTOGRAM:WINDOW:X1POSITION -200E-6"
20 END

Query :HISTogram:WINDow:X1Position?

:HISTogram:WINDow:LLIMit?

The :HISTogram:WINDow:X1Position? query returns the value of the X1
histogram window marker.

Returned Format [:HISTogram:WINDow:X1Position] <x1_position><NL>

Example This example returns the result of the X1 position query and prints it to the
computer’s screen.
10 DIM X1$[50]
20 OUTPUT 707;":HISTOGRAM:WINDOW:X1POSITION?"
30 ENTER 707;X1$
40 PRINT X1$
50 END

18-10

Histogram Commands
WINDow:X2Position | RLIMit

WINDow:X2Position | RLIMit

Command :HISTogram:WINDow:X2Position <x2_position>

or

:HISTogram:WINDow:RLIMit <x2_position>

The :HISTogram:WINDow:X2Position command moves the X2 marker (right
limit) of the histogram window. The histogram window determines the portion
of the display used to build the database used for the histogram. The histogram
window markers will track the scale of the histogram window source.

<x2_position> A real number that represents the right boundary of the histogram window.

Example This example sets the X2 marker to 200 microseconds.
10 OUTPUT 707;":HISTOGRAM:WINDOW:X2POSITION 200E-6"
20 END

Query :HISTogram:WINDow:X2Position?

:HISTogram:WINDow:RLIMit?

The :HISTogram:WINDow:X2Position? query returns the value of the X2
histogram window marker.

Returned Format [:HISTogram:WINDow:X2Position] <x2_position><NL>

Example This example returns the result of the X2 position query and prints it to the
computer’s screen.
10 DIM X2$[50]
20 OUTPUT 707;":HISTOGRAM:WINDOW:X2POSITION?"
30 ENTER 707;X2$
40 PRINT X2$
50 END

18-11

Histogram Commands
WINDow:Y1Position | BLIMit

WINDow:Y1Position | BLIMit

Command :HISTogram:WINDow:Y1Position <y1_POSITION>

or

:HISTogram:WINDow:BLIMit <y1_POSITION>

The :HISTogram:WINDow:Y1Position command moves the Y1 marker (bottom
limit) of the histogram window. The histogram window determines the portion
of the display used to build the database used for the histogram. The histogram
window markers will track the scale of the histogram window source.

<y1_position> A real number that represents the bottom boundary of the histogram window.

Example This example sets the position of the Y1 marker to -250 mV.
10 OUTPUT 707;":HISTOGRAM:WINDOW:Y1POSITION -250E-3"
20 END

Query :HISTogram:WINDow:Y1Position?

:HISTogram:WINDow:BLIMit?

The :HISTogram:WINDow:Y1Position? query returns the value of the Y1
histogram window marker.

Returned Format [:HISTogram:WINDow:Y1Position] <y1_position><NL>

Example This example returns the result of the Y1 position query and prints it to the
computer’s screen.
10 DIM Y1$[50]
20 OUTPUT 707;":HISTOGRAM:WINDOW:Y1POSITION?"
30 ENTER 707;Y1$
40 PRINT Y1$
50 END

18-12

Histogram Commands
WINDow:Y2Position | TLIMit

WINDow:Y2Position | TLIMit

Command :HISTogram:WINDow:Y2Position <y2_position>

or

:HISTogram:WINDow:TLIMit <y2_position>

The :HISTogram:WINDow:Y2Position command moves the Y2 marker (top
limit) of the histogram window. The histogram window determines the portion
of the display used to build the database used for the histogram. The histogram
window markers will track the scale of the histogram window source.

<y2_position> A real number that represents the top boundary of the histogram window.

Example This example sets the position of the Y2 marker to 250 mV.
10 OUTPUT 707;":HISTOGRAM:WINDOW:Y2POSITION 250E-3"
20 END

Query :HISTogram:WINDow:Y2Position?

:HISTogram:WINDow:TLIMit?

The :HISTogram:WINDow:Y2Position? query returns the value of the Y2
histogram window marker.

Returned Format [:HISTogram:WINDow:Y2Position] <y2_position><NL>

Example This example returns the result of the Y2 position query and prints it to the
computer’s screen.
10 DIM Y2$[50]
20 OUTPUT 707;":HISTOGRAM:WINDOW:Y2POSITION?"
30 ENTER 707;Y2$
40 PRINT Y2$
50 END

19

Marker Commands

19-2

Marker Commands

The commands in the MARKer subsystem specify and query the settings
of the time markers (X axis) and current measurement unit markers
(volts, amps, and watts for the Y axis). You typically set the Y-axis
measurement units using the :CHANnel:UNITs command.

These MARKer commands and queries are implemented in the Infiniium
Oscilloscopes:

• CURsor?
• MEASurement:READout
• MODE
• TDELta?
• TSTArt
• TSTOp
• VDELta?
• VSTArt
• VSTOp
• X1Position
• X2Position
• X1Y1source
• X2Y2source
• XDELta?
• Y1Position
• Y2Position
• YDELta?

Guidelines for Using Queries in Marker Modes

In Track Waveforms mode, use :MARKer:CURSor? to track the position of the
waveform. In Manual Markers and Track Measurements Markers modes, use other
queries, such as the TSTArt? and TSTOp?, and VSTArt? and VSTOp? queries. If you
use :MARKer:CURSor? when the oscilloscope is in either Manual Markers or Track
Measurements Markers modes, it will put the oscilloscope in Track Waveforms
mode, regardless of the mode previously selected.

19-3

Marker Commands
CURSor?

CURSor?

Query :MARKer:CURSor? {DELTa | STARt | STOP}

The :MARKer:CURSor? query returns the time and current measurement unit
values of the specified marker (if markers are in Track Waveforms mode) as an
ordered pair of time and measurement unit values.

• If DELTA is specified, the value of delta Y and delta X are returned.

• If START is specified, marker A’s x-to-y positions are returned.

• If STOP is specified, marker B’s x-to-y positions are returned.

Returned Format [:MARKer:CURSor] {DELTa | STARt | STOP}
{<Ax, Ay> | <Bx, By> | <deltaX, deltaY>}<NL>

Example This example returns the current position of the X cursor and measurement
unit marker 1 to the string variable, Position$. The program then prints the
contents of the variable to the computer's screen.
10 DIM Position$[50]!Dimension variable
20 OUTPUT 707;":MARKER:CURSOR? START"
30 ENTER 707;Position$
40 PRINT Position$
50 END

C A U T I O N The :MARKer:CURSor? query may change marker mode and results.

In Track Waveforms mode, use :MARKer:CURSor? to track the position of the
waveform. In Manual Markers and Track Measurements Markers modes, use
other marker queries, such as the TSTArt? and TSTOp?, and VSTArt? and
VSTOp? queries.

If you use :MARKer:CURSor? when the oscilloscope is in either Manual
Markers or Track Measurements Markers modes, it will put the oscilloscope
in Track Waveforms mode, regardless of the mode previously selected. In
addition, measurement results may not be what you expected.

19-4

Marker Commands
MEASurement:READout

MEASurement:READout

Command :MARKer:MEASurement:READout {{ON|1} | {OFF|0}}

The :MARKer:MEASurement:READout command controls the display of the
marker position values.

ON|1 Shows marker position values.

OFF|0 Turns off marker position values.

Query :MARKer:MEASurement:READout?

The :MARKer:MEASurement:READout? query returns the current display of
the marker position values.

Returned Format {:MARKer:MEASurement:READout] {1|0}<NL>

Example This example displays the marker position values.
10 OUTPUT 707;":MARKER:MEASUREMENT:READOUT ON"
20 END

19-5

Marker Commands
MODE

MODE

Command :MARKer:MODE {OFF | MANual | WAVeform | MEASurement}

The :MARKer:MODE command sets the marker mode.

OFF Removes the marker information from the display.

MANual Enables manual placement of markers A and B.

WAVeform Tracks the current waveform.

MEASurement Tracks the most recent measurement.

Example This example sets the marker mode to waveform.
10 OUTPUT 707;":MARKER:MODE WAVEFORM"
20 END

Query :MARKer:MODE?

The :MARKer:MODE? query returns the current marker mode.

Returned Format [:MARKer:MODE] {OFF | MANual | WAVeform | MEASurement}<NL>

Example This example places the current marker mode in the string variable, Selection$,
then prints the contents of the variable to the computer's screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":MARKER:MODE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

19-6

Marker Commands
TDELta?

TDELta?

Query :MARKer:TDELta?

The :MARKer:TDELta? query returns the time difference between Ax and Bx
time markers. The :MARKer:XDELta command described in this chapter does
also.

Returned Format [:MARKer:TDELta] <time><NL>

<time> The time difference between Ax and Bx time markers.

Example This example places the time difference between the Ax and Bx markers in the
numeric variable, Time, then prints the contents of the variable to the
computer's screen. Notice that this example uses the :MARKer:XDELta? query
instead of the :MARKer:TDELta? query.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:XDELTA?"
30 ENTER 707;Time
40 PRINT Time
50 END

Use :MARKer:XDELta? Instead of :MARKer:TDELta?

The :MARKer:TDELta? query performs the same function as the :MARKer:XDELta?
query. The :MARKer:TDELta? query is provided for compatibility with programs
written for older oscilloscopes. You should use :MARKer:XDELta? for new programs.

Turn Headers Off

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

19-7

Marker Commands
TSTArt

TSTArt

Command :MARKer:TSTArt <Ax_position>

The :MARKer:TSTArt command sets the Ax marker position. The
:MARKer:X1Position command described in this chapter also sets the
Ax marker position.

<Ax_position> A real number for the time at the Ax marker, in seconds.

Example This example sets the Ax marker at 90 ns. Notice that this example uses the
X1Position command instead of TSTArt.
10 OUTPUT 707;":MARKER:X1POSITION 90E-9"
20 END

Query :MARKer:TSTArt?

The :MARKer:TSTArt? query returns the time at the Ax marker.

Returned Format [:MARKer:TSTArt] <Ax_position><NL>

Use :MARKer:X1Position Instead of :MARKer:TSTArt

The :MARKer:TSTArt command and query perform the same function as the
:MARKer:X1Position command and query. The :MARKer:TSTArt command is
provided for compatibility with programs written for previous oscilloscopes. You
should use :MARKer:X1Position for new programs.

19-8

Marker Commands
TSTArt

Example This example places the current setting of the Ax marker in the numeric
variable, Setting, then prints the contents of the variable to the computer's
screen. Notice that this example uses the :MARKer:X1Position? query instead
of the :MARKer:TSTArt? query.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off"
20 OUTPUT 707;":MARKER:X1POSITION?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

Do Not Use TST as the Short Form of TSTArt and TSTOp

The short form of the TSTArt command and query does not follow the defined
convention for short form commands. Because the short form, TST, is the same for
TSTArt and TSTOp, sending TST produces an error. Use TSTA for TSTArt.

19-9

Marker Commands
TSTOp

TSTOp

Command :MARKer:TSTOp <Bx_position>

The :MARKer:TSTOp command sets the Bx marker position. The
:MARKer:X2Position command described in this chapter also sets the
Bx marker position.

<Bx_position> A real number for the time at the Bx marker, in seconds.

Example This example sets the Bx marker at 190 ns. Notice that this example uses the
X2Position command instead of TSTOp.
10 OUTPUT 707;":MARKER:X2POSITION 190E-9"
20 END

Use :MARKer:X2Position Instead of :MARKer:TSTOp

The :MARKer:TSTOp command and query perform the same function as the
:MARKer:X2Position command and query. The :MARKer:TSTOp command is
provided for compatibility with programs written for previous oscilloscopes.
You should use :MARKer:X2Position for new programs.

19-10

Marker Commands
TSTOp

Query :MARKer:TSTOp?

The :MARKer:TSTOp? query returns the time at the Bx marker position.

Returned Format [:MARKer:TSTOp] <Bx_position><NL>

Example This example places the current setting of the Bx marker in the numeric
variable, Setting, then prints the contents of the variable to the computer's
screen. Notice that this example uses the :MARKer:X2Position? query instead
of the :MARKer:TSTOp? query.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:X2POSITION?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

Do Not Use TST as the Short Form of TSTArt and TSTOp

The short form of the TSTOp command and query does not follow the defined
convention for short form commands. Because the short form, TST, is the same for
TSTArt and TSTOp, sending TST produces an error. Use TSTO for TSTOp.

19-11

Marker Commands
VDELta?

VDELta?

Query :MARKer:VDELta?

The :MARKer:VDELta? query returns the current measurement unit difference
between markers Ay and By. The :MARKer:YDELta? query described in this
chapter does also.

Returned Format [:MARKer:VDELta] <value><NL>

<value> Current measurement unit difference between markers Ay and By.

Example This example returns the voltage difference between Ay and By to the numeric
variable, Volts, then prints the contents of the variable to the computer's screen.
Notice that this example uses the :MARKer:YDELta? query instead of the
:MARKer:VDELta? query.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:YDELTA?"
30 ENTER 707;Volts
40 PRINT Volts
50 END

Use :MARKer:YDELta? Instead of :MARKer:VDELta?

The :MARKer:VDELta? query performs the same function as the :MARKer:YDELta?
query. The :MARKer:VDELta? query is provided for compatibility with programs
written for previous oscilloscopes. You should use the :MARKer:YDELta? query for
new programs.

19-12

Marker Commands
VSTArt

VSTArt

Command :MARKer:VSTArt <Ay_position>

The :MARKer:VSTArt command sets the Ay marker position and moves the
Ay marker to the specified measurement unit value on the specified source.
The :MARKer:Y1Position command described in this chapter does also.

<Ay_position> A real number for the current measurement unit value at Ay (volts, amps, or
watts).

Example This example sets Ay to −10 mV. Notice that this example uses the Y1Position
command instead of VSTArt.
10 OUTPUT 707;":MARKER:Y1POSITION −10E-3"
20 END

Query :MARKer:VSTArt?

The :MARKer:VSTArt? query returns the current measurement unit level of Ay.

Returned Format [:MARKer:VSTArt] <Ay_position><NL>

Use :MARKer:Y1Position Instead of :MARKer:VSTArt

The :MARKer:VSTArt command and query perform the same function as the
:MARKer:Y1Position command and query. The :MARKer:VSTArt command is
provided for compatibility with programs written for previous oscilloscopes. You
should use :MARKer:Y1Position for new programs.

19-13

Marker Commands
VSTArt

Example This example returns the voltage setting for Ay to the numeric variable, Value,
then prints the contents of the variable to the computer's screen. Notice that
this example uses the :MARKer:Y1Position? query instead of the
:MARKer:VSTArt? query.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:Y1POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

Do Not Use VST as the Short Form of VSTArt and VSTOp

The short form of the VSTArt command and query does not follow the defined
convention for short form commands. Because the short form, VST, is the same for
VSTArt and VSTOp, sending VST produces an error. Use VSTA for VSTArt.

19-14

Marker Commands
VSTOp

VSTOp

Command :MARKer:VSTOp <By_position>

The :MARKer:VSTOp command sets the By marker position and moves By to
the specified measurement unit on the specified source.

The :MARKer:Y2Position command described in this chapter does also.

<By_position> A real number for the current measurement unit value at By (volts, amps, or
watts).

Example This example sets By to -100 mV. Notice that this example uses the
:MARKer:Y2Position command instead of :MARKer:VSTOp.
10 OUTPUT 707;":MARKER:Y2POSITION -100E-3"
20 END

Query :MARKer:VSTOp?

The :MARKer:VSTOp? query returns the current measurement unit level at By.

Returned Format [:MARKer:VSTOp] <By_position><NL>

Use :MARKer:Y2Position Instead of :MARKer:VSTOp

The :MARKer:VSTOp command and query perform the same function as the
:MARKer:Y2Position command and query. The :MARKer:VSTOp command is
provided for compatibility with programs written for previous oscilloscopes.
You should use :MARKer:Y2Position for new programs.

19-15

Marker Commands
VSTOp

Example This example returns the voltage at By to the numeric variable, Value, then
prints the contents of the variable to the computer's screen. Notice that this
example uses the :MARKer:Y2Position? query instead of the :MARKer:VSTOp?
query.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:Y2POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

Do Not Use VST as the Short Form of VSTArt and VSTOp

The short form of the VSTOp command and query does not follow the defined
convention for short form commands. Because the short form, VST, is the same for
VSTArt and VSTOp, sending VST produces an error. Use VSTO for VSTOp.

19-16

Marker Commands
X1Position

X1Position

Command :MARKer:X1Position <Ax_position>

The :MARKer:X1Position command sets the Ax marker position, and moves the
Ax marker to the specified time with respect to the trigger time.

<Ax_position> A real number for the time at the Ax marker in seconds.

Example This example sets the Ax marker to 90 ns.
10 OUTPUT 707;":MARKER:X1POSITION 90E-9"
20 END

Query :MARKer:X1Position?

The :MARKer:X1Position? query returns the time at the Ax marker position.

Returned Format [:MARKer:X1Position] <Ax_position><NL>

Example This example returns the current setting of the Ax marker to the numeric
variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:X1POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also :MARKer:TSTArt

19-17

Marker Commands
X2Position

X2Position

Command :MARKer:X2Position <Bx_position>

The :MARKer:X2Position command sets the Bx marker position and moves the
Bx marker to the specified time with respect to the trigger time.

<Bx_position> A real number for the time at the Bx marker in seconds.

Example This example sets the Bx marker to 90 ns.
10 OUTPUT 707;":MARKER:X2POSITION 90E-9"
20 END

Query :MARKer:X2Position?

The :MARKer:X2Position? query returns the time at Bx marker in seconds.

Returned Format [:MARKer:X2Position] <Bx_position><NL>

Example This example returns the current position of the Bx marker to the numeric
variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:X2POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

19-18

Marker Commands
X1Y1source

X1Y1source

Command :MARKer:X1Y1source {CHANnel<N> | FUNCtion<N> |
WMEMory<N>}

The :MARKer:X1Y1source command sets the source for the Ax and Ay markers.
The channel you specify must be enabled for markers to be displayed. If the
channel, function, or waveform memory that you specify is not on, an error
message is issued and the query will return channel 1.

<N> CHANnel<N> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

Example This example selects channel 1 as the source for markers Ax and Ay.
10 OUTPUT 707;":MARKER:X1Y1SOURCE CHANNEL1"
20 END

Query :MARKer:X1Y1source?

The :MARKer:X1Y1source? query returns the current source for markers
Ax and Ay.

Returned Format [:MARKer:X1Y1source] {CHANnel<N> | FUNCtion<N> |
WMEMory<N>}<NL>

Example This example returns the current source selection for the Ax and Ay markers
to the string variable, Selection$, then prints the contents of the variable to the
computer's screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":MARKER:X1Y1SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

19-19

Marker Commands
X2Y2source

X2Y2source

Command :MARKer:X2Y2source {CHANnel<N> | FUNCtion<N> |
WMEMory<N>}

The :MARKer:X2Y2source command sets the source for the Bx and By markers.
The channel you specify must be enabled for markers to be displayed. If the
channel, function, or waveform memory that you specify is not on, an error
message is issued and the query will return channel 1.

<N> CHANnel<N> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

Example This example selects channel 1 as the source for markers Bx and By.
10 OUTPUT 707;":MARKER:X2Y2SOURCE CHANNEL1"
20 END

Query :MARKer:X2Y2source?

The :MARKer:X2Y2source? query returns the current source for markers
Bx and By.

Returned Format [:MARKer:X2Y2source] {CHANnel<N> | FUNCtion<N> |
WMEMory<N>}<NL>

Example This example returns the current source selection for the Bx and By markers
to the string variable, Selection$, then prints the contents of the variable to the
computer's screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":MARKER:X2Y2SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

19-20

Marker Commands
XDELta?

XDELta?

Query :MARKer:XDELta?

The :MARKer:XDELta? query returns the time difference between Ax and Bx
time markers.

Xdelta = time at Bx − time at Ax

Returned Format [:MARKer:XDELta] <time><NL>

<time> Time difference between Ax and Bx time markers in seconds.

Example This example returns the current time between the Ax and Bx time markers to
the numeric variable, Time, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:XDELTA?"
30 ENTER 707;Time
40 PRINT Time
50 END

19-21

Marker Commands
Y1Position

Y1Position

Command :MARKer:Y1Position <Ay_position>

The :MARKer:Y1Position command sets the Ay marker position on the specified
source.

<Ay_position> A real number for the current measurement unit value at Ay (volts, amps, or
watts).

Example This example sets the Ay marker to 10 mV.
10 OUTPUT 707;":MARKER:Y1POSITION 10E-3"
20 END

Query :MARKer:Y1Position?

The :MARKer:Y1Position? query returns the current measurement unit level at
the Ay marker position.

Returned Format [:MARKer:Y1Position] <Ay_position><NL>

Example This example returns the current setting of the Ay marker to the numeric
variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:Y1POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

19-22

Marker Commands
Y2Position

Y2Position

Command :MARKer:Y2Position <By_position>

The :MARKer:Y2Position command sets the By marker position on the specified
source.

<By_position> A real number for the current measurement unit value at By (volts, amps, or
watts).

Example This example sets the By marker to -100 mV.
10 OUTPUT 707;":MARKER:Y2POSITION -100E-3"
20 END

Query :MARKer:Y2Position?

The :MARKer:Y2Position? query returns the current measurement unit level at
the By marker position.

Returned Format [:MARKer:Y2Position] <By_position><NL>

Example This example returns the current setting of the By marker to the numeric
variable, Value, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:Y2POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

19-23

Marker Commands
YDELta?

YDELta?

Query :MARKer:YDELta?

The :MARKer:YDELta? query returns the current measurement unit difference
between Ay and By.

Vdelta = value at By − value at Ay

Returned Format [:MARKer:YDELta] <value><NL>

<value> Measurement unit difference between Ay and By.

Example This example returns the voltage difference between Ay and By to the numeric
variable, Volts, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:YDELTA?"
30 ENTER 707;Volts
40 PRINT Volts
50 END

19-24

20

Mask Test Commands

20-2

Mask Test Commands

The MTESt subsystem commands and queries control the mask test
features. Mask Testing automatically compares measurement results
with the boundaries of a set of polygons that you define. Any waveform
or sample that falls within the boundaries of one or more polygons is
recorded as a failure.

These MTESt commands and queries are implemented in the Infiniium
Oscilloscopes:

• ALIGn
• AlignFIT
• AMASk:CREate
• AMASk:SOURce
• AMASk:SAVE | STORe
• AMASk:UNITs
• AMASk:XDELta
• AMASk:YDELta
• AUTO
• AVERage
• AVERage:COUNt
• COUNt:FAILures?
• COUNt:FWAVeforms?
• COUNt:WAVeforms?
• DELete
• ENABle
• FOLDing (Clock Recovery software only)
• HAMPlitude
• IMPedance
• INVert
• LAMPlitude
• LOAD
• NREGions?

20-3

• PROBe:IMPedance?
• RUMode
• RUMode:SOFailure
• SCALe:BIND
• SCALe:X1
• SCALe:XDELta
• SCALe:Y1
• SCALe:Y2
• SOURce
• STARt | STOP
• STIMe
• TITLe?
• TRIGger:SOURce

20-4

Mask Test Commands
ALIGn

ALIGn

Command :MTESt:ALIGn

The :MTESt:ALIGn command automatically aligns and scales the mask to the
current waveform on the display. The type of mask alignment performed
depends on the current setting of the Use File Setup When Aligning control.
See the :MTESt:AUTO command for more information.

Example This example aligns the current mask to the current waveform.
10 Output 707;":MTEST:ALIGN"
20 END

20-5

Mask Test Commands
AlignFIT

AlignFIT

Command :MTESt:AlignFIT {EYEAMI | EYECMI | EYENRZ | FANWidth
| FAPeriod | FAPWidth | FYNWidth | FYPWidth | NONE
| NWIDth | PWIDth | TMAX | TMIN}

The :MTESt:AlignFIT command specifies the alignment type for aligning a mask
to a waveform. The pulse mask standard has rules that determine which
controls the oscilloscope can adjust or change during the alignment process.
An X in a column indicates that the control can be adjusted for each of the
alignment types of Table 21-1.

Table 20-1 Available Alignment Types

Alignment
Type

Waveform
Type

Horizontal
Position

0 Level
Voltage

1 Level
Voltage

Vertical
Offset

Invert
Waveform

EYEAMI AMI X X X

EYECMI CMI X X X

EYENRZ NRZ X X X

FANWidth Negative X X X

FAPeriod Full Period X X

FAPWidth Positive X X X

FYNWidth Negative X X X

FYPWidth Positive X X X

NONE Automask

NWIDth Negative
Pulse

X X X X

PWIDth Positive
Pulse

X X X X

TMAX Positive Sine
Pulse

X X X X

TMIN Negative
Sine Pulse

X X X X

20-6

Mask Test Commands
AlignFIT

Example This example specifies the alignment type to be EYEAMI.
10 Output 707;":MTEST:ALIGNFIT EYEAMI"
20 END

Query :MTESt:AlignFIT?

The :MTEST:AlignFIT? query returns the alignment type used for the mask.

Returned Format [:MTESt:AlignFIT] {EYEAMI | EYECMI | EYENRZ |
FANWidth | FAPeriod | FAPWidth | FYNWidth |
FYPWidth | NONE | NWIDth | PWIDth | TMAX | TMIN}<NL>

20-7

Mask Test Commands
AMASk:CREate

AMASk:CREate

Command :MTESt:AMASk:CREate

The :MTESt:AMASk:CREate command automatically constructs a mask around
the current selected channel, using the tolerance parameters defined by the
AMASk:XDELta, AMASk:YDELta, and AMASk:UNITs commands. The mask
only encompasses the portion of the waveform visible on the display, so you
must ensure that the waveform is acquired and displayed consistently to obtain
repeatable results.

The :MTESt:SOURce command selects the channel and should be set before
using this command.

Example This example creates an automask using the current XDELta and YDELta units
settings.
10 OUTPUT 707;":MTEST:AMASK:CREATE"
20 END

20-8

Mask Test Commands
AMASk:SOURce

AMASk:SOURce

Command :MTESt:AMASk:SOURce CHANnel<number>

The :MTESt:AMASk:SOURce command selects the source for the interpretation
of the AMASk:XDELta and AMASk:YDELta parameters when AMASk:UNITs is
set to CURRent. When UNITs are CURRent, the XDELta and YDELta
parameters are defined in terms of the channel units, as set by the
:CHANnel:UNITs command, of the selected source. Suppose that UNITs are
CURRent and that you set SOURce to CHANNEL1, which is using units of volts.
Then you can define AMASk:XDELta in terms of volts and AMASk:YDELta in
terms of seconds.

<number> An integer, 1 through 2 for the two channel Infiniium oscilloscope

An integer, 1 through 4 for all other Infiniium oscilloscope models.

Example This example sets the automask source to Channel 1.
10 OUTPUT 707;"MTEST:AMASK:SOURCE CHANNEL1"
20 END

Query :MTESt:AMASk:SOURce?

The :MTESt:AMASk:SOURce? query returns the currently set source.

Returned Format [:MTESt:AMASk:SOURce] CHANnel<number><NL>

Example This example gets the source setting for automask and prints the result on the
computer display.
10 DIM Amask_source$[30]
20 OUTPUT 707;"MTEST:AMASK:SOURCE?"
30 ENTER 707;Amask_source$
40 PRINT Amask_source$
50 END

20-9

Mask Test Commands
AMASk:[SAVE | STORe]

AMASk:[SAVE | STORe]

Command :MTESt:AMASk:[SAVE|STORe] "<filename>"

The :MTESt:AMASk:SAVE command saves the automask generated mask to a
file. If an automask has not been generated, an error occurs.

<filename> An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used). The filename assumes the present working
directory if a path does not precede the file name. The default save path is
C:\SCOPE\MASKS.

Example This example saves the automask generated mask to a file named "FILE1".
10 OUTPUT 707;":MTEST:AMASK:SAVE""FILE1"""
20 END

20-10

Mask Test Commands
AMASk:UNITs

AMASk:UNITs

Command :MTESt:AMASk:UNITs {CURRent | DIVisions}

The :MTESt:AMASk:UNITs command alters the way the mask test subsystem
interprets the tolerance parameters for automasking as defined by
AMASk:XDELta and AMASk:YDELta commands.

CURRent When set to CURRent, the mask test subsystem uses the units as set by the
:CHANnel:UNITs command, usually time for ∆X and voltage for ∆Y.

DIVisions When set to DIVisions, the mask test subsystem uses the graticule as the
measurement system, so tolerance settings are specified as parts of a screen
division. The mask test subsystem maintains separate XDELta and YDELta
settings for CURRent and DIVisions. Thus, XDELta and YDELta are not
converted to new values when the UNITs setting is changed.

Example This example sets the measurement units for automasking to the current
:CHANnel:UNITs setting.
10 OUTPUT 707;"MTEST:AMASK:UNITS CURRENT"
20 END

Query :MTESt:AMASk:UNITs?

The AMASk:UNITs query returns the current measurement units setting for the
mask test automask feature.

Returned Format [:MTESt:AMASk:UNITs] {CURRent | DIVision}<NL>

Example This example gets the automask units setting, then prints the setting on the
screen of the computer.
10 DIM Automask_units$[10]
20 OUTPUT 707;"MTEST:AMASK:UNITS?"
30 ENTER 707;Automask_units$
40 PRINT Automask_units$
50 END

20-11

Mask Test Commands
AMASk:XDELta

AMASk:XDELta

Command :MTESt:AMASk:XDELta <xdelta_value>

The :MTESt:AMASk:XDELta command sets the tolerance in the X direction
around the waveform for the automasking feature. The absolute value of the
tolerance will be added and subtracted to horizontal values of the waveform to
determine the boundaries of the mask.

<xdelta_value> A value for the horizontal tolerance. This value is interpreted based on the
setting specified by the AMASk:UNITs command; thus, if you specify 250-E3,
the setting for AMASk:UNITs is CURRent, and the current setting specifies time
in the horizontal direction, the tolerance will be ±250 ms. If the setting for
AMASk:UNITs is DIVisions, the same xdelta_value will set the tolerance to ±250
millidivisions, or 1/4 of a division.

Example This example sets the units to divisions and sets the ∆X tolerance to one-eighth
of a division.
10 OUTPUT 707;"MTEST:AMASK:UNITS DIVISIONS"
20 OUTPUT 707;":MTEST:AMASK:XDELTA 125E-3"
30 END

20-12

Mask Test Commands
AMASk:XDELta

Query :MTESt:AMASk:XDELta?

The AMASk:XDELta? query returns the current setting of the ∆X tolerance for
automasking. If your computer program will interpret this value, it should also
request the current measurement system using the AMASk:UNITs query.

Returned Format [:MTESt:AMASk:XDELta] <xdelta_value><NL>

Example This example gets the measurement system units and ∆X settings for
automasking from the oscilloscope and prints the results on the computer
screen.
10 DIM Automask_units$[10]
20 DIM Automask_xdelta$[20]
30 OUTPUT 707;"MTEST:AMASK:UNITS?"
40 ENTER 707;Automask_units$
50 OUTPUT 707;":MTEST:AMASK:XDELTA?"
60 ENTER 707;Automask_xdelta$
70 PRINT Automask_units$
80 PRINT Automask_xdelta$
90 END

20-13

Mask Test Commands
AMASk:YDELta

AMASk:YDELta

Command :MTESt:AMASk:YDELta <ydelta_value>

The :MTESt:AMASk:YDELta command sets the vertical tolerance around the
waveform for the automasking feature. The absolute value of the tolerance will
be added and subtracted to vertical values of the waveform to determine the
boundaries of the mask.

This command requires that mask testing be enabled, otherwise a settings
conflict error message is displayed. See :MTESt:ENABle for information on
enabling mask testing.

<ydelta_value> A value for the vertical tolerance. This value is interpreted based on the setting
specified by the AMASk:UNITs command; thus, if you specify 250-E3, the
setting for AMASk:UNITs is CURRent, and the current setting specifies voltage
in the vertical direction, the tolerance will be ±250 mV. If the setting for
AMASk:UNITs is DIVisions, the same ydelta_value will set the tolerance to ±250
millidivisions, or 1/4 of a division.

Example This example sets the units to current and sets the ∆Y tolerance to 30 mV,
assuming that the current setting specifies volts in the vertical direction.
10 OUTPUT 707;"MTEST:AMASK:UNITS CURRENT"
20 OUTPUT 707;":MTEST:AMASK:YDELTA 30E-3"
30 END

20-14

Mask Test Commands
AMASk:YDELta

Query :MTESt:AMASk:YDELta?

The AMASk:YDELta? query returns the current setting of the ∆Y tolerance for
automasking. If your computer program will interpret this value, it should also
request the current measurement system using the AMASk:UNITs query.

Returned Format [:MTESt:AMASk:YDELta] <ydelta_value><NL>

Example This example gets the measurement system units and ∆Y settings for
automasking from the oscilloscope and prints the results on the computer
screen.
10 DIM Automask_units$[10]
20 DIM Automask_ydelta$[20]
30 OUTPUT 707;"MTEST:AMASK:UNITS?"
40 ENTER 707;Automask_units$
50 OUTPUT 707;":MTEST:AMASK:YDELTA?"
60 ENTER 707;Automask_ydelta$
70 PRINT Automask_units$
80 PRINT Automask_ydelta$
90 END

20-15

Mask Test Commands
AUTO

AUTO

Command :MTESt:AUTO {{ON|1} | {OFF|0}}

The :MTESt:AUTO command enables (ON) or disables (OFF) the Use File
Setup When Aligning control. This determines which type of mask alignment
is performed when the :MTESt:ALIGn command is sent. When enabled, the
oscilloscope controls are changed to the values which are determined by the
loaded mask file. This alignment guarantees that the aligned mask and any
subsequent mask tests meet the requirements of the standard.

When disabled, the alignment is performed using the current oscilloscope
settings. This may be useful when troubleshooting problems during the design
phase of a project.

Example This example enables the Use File Settings When Aligning control.
10 OUTPUT 707;"MTEST:AUTO ON"
20 END

Query :MTESt:AUTO?

The :MTESt:AUTO? query returns the current value of the Use File Setup When
Aligning control.

Returned Format [:MTESt:AUTO] {1|0} <NL>

Example 10 OUTPUT 707;":MTEST:AUTO?"
20 ENTER 707;Value
30 PRINT Value
40 END

20-16

Mask Test Commands
AVERage

AVERage

Command :MTESt:AVERage {{ON|1} | {OFF|0}}

The :MTESt:AVERage command enables or disables averaging. When ON, the
oscilloscope acquires multiple data values for each time bucket, and averages
them. When OFF, averaging is disabled. To set the number of averages, use
the :MTESt:AVERage:COUNt command described next.

The :ACQuire:AVERage command performs the same function as this
command.

Averaging is not available in PDETect mode.

Example This example turns averaging on.
10 OUTPUT 707;"MTEST:AVERAGE ON"
20 END

Query :MTESt:AVERage?

The :MTESt:AVERage? query returns the current setting for averaging.

Returned Format [:MTESt:AVERage] {1|0} <NL>

Example This example places the current settings for averaging into the string variable,
Setting$, then prints the contents of the variable to the computer’s screen.
10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;"MTEST:AVERAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

20-17

Mask Test Commands
AVERage:COUNt

AVERage:COUNt

Command :MTESt:AVERage:COUNt <count_value>

The :MTESt:AVERage:COUNt command sets the number of averages for the
waveforms. In the AVERage mode, the :MTESt:AVERage:COUNt command
specifies the number of data values to be averaged for each time bucket before
the acquisition is considered complete for that time bucket.

The :ACQuire:AVERage:COUNt command performs the same function as this
command.

<count_value> An integer, 2 to 4096, specifying the number of data values to be averaged.

Example This example specifies that 16 data values must be averaged for each time
bucket to be considered complete. The number of time buckets that must be
complete for the acquisition to be considered complete is specified by the
:MTESt:COMPlete command.
10 OUTPUT 707;":MTESt:COUNT 16"
20 END

Query :MTESt:COUNt?

The :MTESt:COUNt? query returns the currently selected count value.

Returned Format [:MTESt:COUNt] <value><NL>

<value> An integer, 2 to 4096, specifying the number of data values to be averaged.

Example This example checks the currently selected count value and places that value
in the string variable, Result$. The program then prints the contents of the
variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":MTEST:AVERAGE:COUNT?"
30 ENTER 707;Result
40 PRINT Result
50 END

20-18

Mask Test Commands
COUNt:FAILures?

COUNt:FAILures?

Query :MTESt:COUNt:FAILures? REGion<number>

The MTESt:COUNt:FAILures? query returns the number of failures that
occurred within a particular mask region.

The value 9.999E37 is returned if mask testing is not enabled or if you specify
a region number that is unused.

<number> An integer, 1 through 8, designating the region for which you want to determine
the failure count.

Returned Format [:MTESt:COUNt:FAILures] REGion<number><number_of_failures>
<NL>

<number_of_
failures>

The number of failures that have occurred for the designated region.

Example This example determines the current failure count for region 3 and prints it on
the computer screen.
10 DIM Mask_failures$[50]
20 OUTPUT 707;"MTEST:COUNT:FAILURES? REGION3"
30 ENTER 707;Mask_failures$
40 PRINT Mask_failures$
50 END

20-19

Mask Test Commands
COUNt:FWAVeforms?

COUNt:FWAVeforms?

Query :MTESt:COUNt:FWAVeforms?

The :MTESt:COUNt:FWAVeforms? query returns the total number of failed
waveforms in the current mask test run. This count is for all regions and all
waveforms, so if you wish to determine failures by region number, use the
COUNt:FAILures? query.

This count may not always be available. It is available only when the following
conditions are true:

• Mask testing was turned on before the histogram or color grade persistence,
and

• No mask changes have occurred, including scaling changes, editing, or new
masks.

The value 9.999E37 is returned if mask testing is not enabled, or if you have
modified the mask.

Returned Format [:MTESt:COUNt:FWAVeforms] <number_of_failed_waveforms><NL>

<number_
of_failed_
waveforms> The total number of failed waveforms for the current test run.

Example This example determines the number of failed waveforms and prints the result
on the computer screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MTEST:COUNT:FWAVEFORMS?
30 ENTER 707;Mask_fwaveforms$
40 PRINT Mask_fwaveforms$
50 END

20-20

Mask Test Commands
COUNt:WAVeforms?

COUNt:WAVeforms?

Query :MTESt:COUNt:WAVeforms?

The :MTESt:COUNt:WAVeforms? query returns the total number of waveforms
acquired in the current mask test run. The value 9.999E37 is returned if mask
testing is not enabled.

Returned Format [:MTESt:COUNt:WAVeforms] <number_of_waveforms><NL>

<number_of_
waveforms> The total number of waveforms for the current test run.

Example This example determines the number of waveforms acquired in the current test
run and prints the result on the computer screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MTEST:COUNT:WAVEFORMS?"
30 ENTER 707;Mask_waveforms
40 PRINT Mask_waveforms
50 END

20-21

Mask Test Commands
DELete

DELete

Command :MTESt:DELete

The :MTESt:DELete command clears the currently loaded mask.

Example This example clears the currently loaded mask.
10 OUTPUT 707;"MTEST:DELETE"
20 END

20-22

Mask Test Commands
ENABle

ENABle

Command :MTESt:ENABle {{ON|1} | {OFF|0}}

The :MTESt:ENABle command enables or disables the mask test features.

ON Enables the mask test features.

OFF Disables the mask test features.

Example This example enables the mask test features.
10 OUTPUT 707;":MTEST:ENABLE ON"
20 END

Query :MTESt:ENABle?

The :MTESt:ENABle? query returns the current state of mask test features.

Returned Format [MTESt:ENABle] {1|0}<NL>

Example This example places the current value of the mask test state in the numeric
variable Value, then prints the contents to the computer’s screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF
20 OUTPUT 707;":MTEST:ENABLE?"
30 ENTER 707;Value
40 PRINT Value
50 END

20-23

Mask Test Commands
FOLDing

FOLDing

Command :MTESt:FOLDing {{ON|1} | {OFF|0}}

The :MTESt:FOLDing command enables (ON) or disables (OFF) the display of
the real time eye. When enabled, an eye diagram of the data.

Example This example enables the display of the real time eye.
10 OUTPUT 707;"MTEST:FOLDING ON"
20 END

Query :MTESt:FOLDing?

The :MTESt:FOLDing? query returns the current state of clock recovery folding.

Returned Format [:MTESt:FOLDing] {1|0} <NL>

Example 10 OUTPUT 707;":MTEST:FOLDING?"
20 ENTER 707;Value
30 PRINT Value
40 END

This command is only available when the E2688A Clock Recovery Software is
installed.

20-24

Mask Test Commands
FOLDing:BITS

FOLDing:BITS

Command :MTESt:FOLDing:BITS {BOTH | DEEMphasis | TRANsition}

The :MTESt:FOLDing:BITS command determines the type of data bits used to
create the eye pattern. The transition bits are greater in amplitude than the
deemphasis bits. The PCI Express standard requires that compliance mask
testing be done for both bit types.

Example This example sets bit type to transition bits.
10 OUTPUT 707;"MTEST:FOLDING:BITS TRANSITION"
20 END

Query :MTESt:FOLDing:BITS?

The :MTESt:FOLDing:BITS? query returns the current setting of the real time
eye bits.

Returned Format [:MTESt:FOLDing:BITS] {BOTH | DEEMphasis | TRANsition} <NL>

Example 10 OUTPUT 707;":MTEST:FOLDING:BITS?"
20 ENTER 707;Value
30 PRINT Value
40 END

This command is only available when the E2688A Clock Recovery Software is
installed.

20-25

Mask Test Commands
HAMPlitude

HAMPlitude

Command :MTESt:HAMPlitude <upper_limit>

The :MTESt:HAMPlitude command sets the maximum pulse amplitude value
that passes the pulse standard. For some of the pulse communications
standards, a pulse has a range of amplitude values and still passes the standard.
This command sets the upper limit used during mask testing.

<upper_limit> A real number that represents the maximum amplitude in volts of a pulse as
allowed by the pulse standard.

Example This example sets the maximum pulse amplitude to 3.6 volts.
10 OUTPUT 707;"MTEST:HAMPLITUDE 3.6"
20 END

Query :MTESt:HAMPlitude?

The :MTESt:HAMPlitude? query returns the current value of the maximum
pulse amplitude.

Returned Format [MTESt:HAMPlitude] <upper_limit><NL>

<upper_limit> A real number that represents the maximum amplitude in volts of a pulse as
allowed by the pulse standard.

Example This example returns the current upper pulse limit and prints it to the
computer’s screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;"MTEST:HAMPLITUDE?"
30 ENTER 707;ULimit
40 PRINT ULimit
50 END

20-26

Mask Test Commands
IMPedance

IMPedance

Command :MTESt:IMPedance {NONE | IMP75 | IMP100 | IMP110 |
IMP120}

The :MTESt:IMPedance command sets the desired probe impedance of the
channel being used for mask testing. This impedance value is used when
starting a mask test to determine whether or not the correct Infiniium probe is
connected and in the case of the E2621A if the switch is set to the correct
impedance value.

Infiniium has an AutoProbe interface that detects probes that have Probe ID
resistors. If one of these probes is connected to the channel being mask tested
and is not the correct probe for the selected impedance, a warning dialog box
appears when the mask test is started from the human interface.

This command is meant to be used in the setup section of a mask file.

NONE Disables the probe impedance check.

IMP75 Enables the probe impedance check for the E2622A probe.

IMP100 Enables the probe impedance check for the E2621A probe with the switch set
to the 100 ohm position.

IMP110 Enables the probe impedance check for the E2621A probe with the switch set
to the 110 ohm position.

IMP120 Enables the probe impedance check for the E2621A probe with the switch set
to the 120 ohm position.

Example This example sets the probe impedance of the channel being used for mask
testing to 100 ohms.
10 OUTPUT 707;"MTEST:IMPEDANCE IMP100"
20 END

20-27

Mask Test Commands
IMPedance

Query :MTESt:IMPedance?

The :MTESt:IMPedance? query returns the current value of the mask test
impedance.

Returned Format [:MTESt:IMPedance] {NONE | IMP75 | IMP100 | IMP110
| IMP120}<NL>

Example This example returns the current value of the mask test impedance and prints
the result to the computer screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MTEST:IMPEDANCE?"
30 ENTER 707;Impedance
40 PRINT Impedance
50 END

20-28

Mask Test Commands
INVert

INVert

Command :MTESt:INVert {{ON|1} | {OFF|0}}

The :MTESt:INVert command inverts the mask for testing negative-going
pulses. The trigger level and mask offset are also adjusted. Not all masks
support negative-going pulse testing, and for these masks, the command is
ignored.

Example This example inverts the mask for testing negative-going pulses.
10 OUTPUT 707;"MTEST:INVERT ON"
20 END

Query :MTESt:INVert?

The :MTESt:INVert? query returns the current inversion setting.

Returned Format [:MTESt:INVert] {1|0}<NL>

20-29

Mask Test Commands
LAMPlitude

LAMPlitude

Command :MTESt:LAMPlitude <lower_limit>

The :MTESt:LAMPlitude command sets the minimum pulse amplitude value
that passes the pulse standard. For some of the pulse communications
standards, a pulse has a range of amplitude values and still passes the standard.
This command sets the lower limit used during mask testing.

<lower_limit> A real number that represents the minimum amplitude in volts of a pulse as
allowed by the pulse standard.

Example This example sets the minimum pulse amplitude to 2.4 volts.
10 OUTPUT 707;"MTEST:LAMPLITUDE 2.4"
20 END

Query :MTESt:LAMPlitude?

The :MTESt LAMPlitude? query returns the current value of the minimum pulse
amplitude.

Returned Format [:MTESt:LAMPlitude] <lower_limit><NL>

<lower_limit> A real number that represents the minimum amplitude in volts of a pulse as
allowed by the pulse standard.

Example This example returns the current lower pulse limit and prints it to the
computer’s screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF !Response headers off
20 OUTPUT 707;"MTEST:LAMPLITUDE?"
30 ENTER 707;ULimit
40 PRINT ULimit
50 END

20-30

Mask Test Commands
LOAD

LOAD

Command :MTESt:LOAD "<filename>"

The :MTESt:LOAD command loads the specified mask file. The default path
for mask files is C:\SCOPE\MASKS. To use a different path, specify the complete
path and file name.

<filename> An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used).

Example This example loads the mask file named "140md_itu_1.msk".
10 OUTPUT 707;"MTEST:LOAD""c:\scope\masks\140md_itu_1.msk"""
20 END

20-31

Mask Test Commands
NREGions?

NREGions?

Query :MTESt:NREGions?

The :MTESt:NREGions? query returns the number of regions that define the
mask.

Returned Format [:MTESt:NREGions] <regions><NL>

<regions> An integer from 0 to 8.

Example This example returns the number of mask regions.
10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":MTEST:NREGIONS?"
30 ENTER 707;Regions
40 PRINT Regions
50 END

20-32

Mask Test Commands
PROBe:IMPedance?

PROBe:IMPedance?

Query :MTESt:PROBe:IMPedance?

The :MTESt:PROBe:IMPedance? query returns the impedance setting for the
E2621A and E2622A probes for the current mask test channel.

Returned Format [:MTESt:PROBe:IMPedance] <impedance><NL>

<impedance> An unquoted string: 75, 100, 110, 120, or NONE

Example This example returns the impedance setting for the probe.
10 DIM Impedance$[20]
20 OUTPUT 707;":SYSTEM:HEADER OFF"
30 OUTPUT 707;":MTEST:PROBE:IMPEDANCE?"
40 ENTER 707;Impedance$
50 PRINT Impedance$
60 END

20-33

Mask Test Commands
RUMode

RUMode

Command :MTESt:RUMode {FORever | TIME, <time> | WAVeforms,
<number_of_waveforms>}

The :MTESt:RUMode command determines the termination conditions for the
mask test. The choices are FORever, TIME, or WAVeforms.

If WAVeforms is selected, a second parameter is required indicating the number
of failures that can occur or the number of samples or waveforms that are to be
acquired.

FORever FORever runs the Mask Test until the test is turned off. This is used when you
want a measurement to run continually and not to stop after a fixed number of
failures. For example, you may want the Mask Test to run overnight and not
be limited by a number of failures.

TIME TIME sets the amount of time in minutes that a mask test will run before it
terminates.

<time> A real number: 0.1 to 1440.0

 WAVeforms WAVeforms sets the maximum number of waveforms that are required before
the mask test terminates.

<number_of_
waveforms>

An integer: 1 to 1,000,000,000.

Example This example sets the mask test subsystem run until mode to continue testing
until 500,000 waveforms have been gathered.
10 OUTPUT 707;"MTEST:RUMODE WAVEFORMS,500E3"
20 END

20-34

Mask Test Commands
RUMode

Query :MTESt:RUMode?

The query returns the currently selected termination condition and value.

Returned Format [:MTESt:RUMode] {FORever | TIME,<time> | WAVeforms,
<number_of_waveforms>}<NL>

Example This example gets the current setting of the mask test run until mode from the
oscilloscope and prints it on the computer screen.
10 DIM MTEST_Runmode$[50]
20 OUTPUT 707; "MTEST:RUMODE?"
30 ENTER 707;":MTEST_Runmode$
40 PRINT MTEST_Runmode$
50 END

20-35

Mask Test Commands
RUMode:SOFailure

RUMode:SOFailure

Command :MTESt:RUMode:SOFailure {{ON|1} | {OFF|0}}

The :MTESt:RUMode:SOFailure command enables or disables the Stop On
Failure run until criteria. When a mask test is run and a mask violation is
detected, the mask test is stopped and the acquisition system is stopped.

Example This example enables the Stop On Failure run until criteria.
10 OUTPUT 707;":MTEST:RUMODE:SOFAILURE ON"
20 END

Query :MTESt:SOFailure?

The :MTESt:SOFailure? query returns the current state of the Stop on Failure
control.

Returned Format [:MTESt:SOFailure] {1|0}<NL>

20-36

Mask Test Commands
SCALe:BIND

SCALe:BIND

Command :MTESt:SCALe:BIND {{ON|1} | {OFF|0}}

The :MTESt:SCALe:BIND command enables or disables Bind 1 & 0 Levels (Bind
-1 & 0 Levels for inverted masks) control. If the Bind 1 & 0 Levels control is
enabled, the 1 Level and the 0 Level controls track each other. Adjusting either
the 1 Level or the 0 Level control shifts the position of the mask up or down
without changing its size. If the Bind 1 & 0 Levels control is disabled, adjusting
either the 1 Level or the 0 Level control changes the vertical height of the mask.

If the Bind -1 & 0 Levels control is enabled, the -1 Level and the 0 Level controls
track each other. Adjusting either the -1 Level or the 0 Level control shifts the
position of the mask up or down without changing its size. If the Bind -1 & 0
Levels control is disabled, adjusting either the -1 Level or the 0 Level control
changes the vertical height of the mask.

Example This example enables the Bind 1 & 0 Levels control.
10 OUTPUT 707;"MTEST:SCALE:BIND ON"
20 END

Query :MTESt:SCALe:BIND?

The :MTESt:SCALe:BIND? query returns the value of the Bind 1&0 control
(Bind -1&0 for inverted masks).

Returned Format [:MTESt:SCALe:BIND?] {1|0}<NL>

20-37

Mask Test Commands
SCALe:X1

SCALe:X1

Command :MTESt:SCALe:X1 <x1_value>

The :MTESt:SCALe:X1 command defines where X=0 in the base coordinate
system used for mask testing. The other X-coordinate is defined by the
SCALe:XDELta command. Once the X1 and XDELta coordinates are set, all X
values of vertices in the mask regions are defined with respect to this value,
according to the equation:

 X = (X x ∆X) + X1
Thus, if you set X1 to 100 ms, and XDELta to 100 ms, an X value of 0.100 is a
vertex at 110 ms.

The oscilloscope uses this equation to normalize vertices. This simplifies
reprogramming to handle different data rates. For example, if you halve the
period of the waveform of interest, you need only to adjust the XDELta value
to set up the mask for the new waveform.

<x1_value> A time value specifying the location of the X1 coordinate, which will then be
treated as X=0 for mask regions coordinates.

Example This example sets the X1 coordinate at 150 ms.
10 OUTPUT 707;":MTEST:SCALE:X1 150E-3"
20 END

Query :MTESt:SCALe:X1?

The :MTESt:SCALe:X1? query returns the current X1 coordinate setting.

Returned Format [:MTESt:SCALe:X1] <x1_value><NL>

Example This example gets the current setting of the X1 coordinate from the oscilloscope
and prints it on the computer screen.
10 DIM Scale_x1$[50]
20 OUTPUT 707;":MTEST:SCALE:X1?"
30 ENTER 707;Scale_x1$
40 PRINT Scale_x1$
50 END

20-38

Mask Test Commands
SCALe:XDELta

SCALe:XDELta

Command :MTESt:SCALe:XDELta <xdelta_value>

The :MTESt:SCALe:XDELta command defines the position of the X2 marker
with respect to the X1 marker. In the mask test coordinate system, the X1
marker defines where X=0; thus, the X2 marker defines where X=1.

Because all X vertices of the regions defined for mask testing are normalized
with respect to X1 and ∆X, redefining ∆X also moves those vertices to stay in
the same locations with respect to X1 and ∆X. Thus, in many applications, it is
best if you define XDELta as a pulse width or bit period. Then a change in data
rate without corresponding changes in the waveform can easily be handled by
changing ∆X.

The X-coordinate of polygon vertices is normalized using this equation:

 X = (X x ∆X) + X1

<xdelta_value> A time value specifying the distance of the X2 marker with respect to the X1
marker.

Example Assume that the period of the waveform you wish to test is 1 ms. Then the
following example will set ∆X to 1 ms, ensuring that the waveform’s period is
between the X1 and X2 markers.
10 OUTPUT 707;":MTEST:SCALE:XDELTA 1E-6:
20 END

20-39

Mask Test Commands
SCALe:XDELta

Query :MTESt:SCALe:XDELta?

The :MTESt:SCALe:XDELta? query returns the current value of ∆X.

Returned Format [:MTESt:SCALe:XDELta] <xdelta_value><NL>

Example This example gets the value of ∆X from the oscilloscope and prints it on the
computer screen.
10 DIM Scale_xdelta$[50]
20 OUTPUT 707;":MTEST:SCALE:XDELTA?"
30 ENTER 707;Scale_xdelta$
40 PRINT Scale_xdelta$
50 END

20-40

Mask Test Commands
SCALe:Y1

SCALe:Y1

Command :MTESt:SCALe:Y1 <y_value>

The :MTESt:SCALe:Y1 command defines where Y=0 in the coordinate system
for mask testing. All Y values of vertices in the coordinate system are defined
with respect to the boundaries set by SCALe:Y1 and SCALe:Y2 according to the
equation:

Y = (Y x (Y2 - Y1)) + Y1

Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of 0.100 in a vertex is at
190 mV.

<y1_value> A voltage value specifying the point at which Y=0.

Example This example sets the Y1 marker to -150 mV.
10 OUTPUT 707; ":MTEST:SCALE:Y1 -150E-3"
20 END

Query :MTESt:SCALe:Y1?

The SCALe:Y1? query returns the current setting of the Y1 marker.

Returned Format [:MTESt:SCALe:Y1] <y1_value><NL>

Example This example gets the setting of the Y1 marker from the oscilloscope and prints
it on the computer screen.
10 DIM Scale_y1$[50]
20 OUTPUT 707;":MTEST:SCALE:Y1?"
30 ENTER 707;Scale_y1$
40 PRINT Scale_y1$
50 END

20-41

Mask Test Commands
SCALe:Y2

SCALe:Y2

Command :MTESt:SCALe:Y2 <y2_value>

The :MTESt:SCALe:Y2 command defines the Y2 marker in the coordinate
system for mask testing. All Y values of vertices in the coordinate system are
defined with respect to the boundaries defined by SCALe:Y1 and SCALe:Y2
according to the following equation:

Y = (Y x (Y2 - Y1)) + Y1

Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of 0.100 in a vertex is at
190 mV.

<y2_value> A voltage value specifying the location of the Y2 marker.

Example This example sets the Y2 marker to 2.5 V.
10 OUTPUT 707;":MTEST:SCALE:Y2 2.5"
20 END

Query :MTESt:SCALe:Y2?

The SCALe:Y2? query returns the current setting of the Y2 marker.

Returned Format [:MTESt:SCALe:Y2] <y2_value><NL>

Example This example gets the setting of the Y2 marker from the oscilloscope and prints
it on the computer screen.
10 DIM Scale_y2$[50]
20 OUTPUT 707;":MTEST:SCALE:Y2?"
30 ENTER 707;Scale_y2$
40 PRINT Scale_y2$
50 END

20-42

Mask Test Commands
SOURce

SOURce

Command :MTESt:SOURce {CHANnel<N> | FUNCtion<M>}

The :MTESt:SOURce command selects the channel which is configured by the
commands contained in a mask file when it is loaded.

<N> An integer, 1 - 2, for two channel Infiniium oscilloscopes.

An integer, 1 - 4, for all other Infiniium oscilloscope models.

<M> An integer, 1 - 4.

Example This example selects channel 1 as the mask test source.
10 OUTPUT 707; "MTEST:SOURCE CHANNEL1"
20 END

Query :MTESt:SOURce?

The :MTESt:SOURce? query returns the channel which is configured by the
commands contained in the current mask file.

Returned Format [:MTESt:SOURce] {CHANnel<N> | FUNCtion<M>}<NL>

Example This example gets the mask test source setting and prints the result on the
computer display.
10 DIM Amask_source$[30]
20 OUTPUT 707;"MTEST:SOURCE?"
30 ENTER 707;Amask_source$
40 PRINT Amask_source$
50 END

20-43

Mask Test Commands
STARt | STOP

STARt | STOP

Command :MTESt:STARt|STOP

The :MTESt:STARt|STOP command starts or stops the mask test. The
:MTESt:STARt command also starts the oscilloscope acquisition system. The
:MTESt:STOP command does not stop the acquisition system.

Example This example starts the mask test and acquisition system.
10 OUTPUT 707;"MTEST:START"
20 END

20-44

Mask Test Commands
STIMe

STIMe

Command :MTESt:STIMe <timeout>

The :MTESt:STIMe command sets the timeout value for the Autoalign feature.
If the oscilloscope is unable to align the mask to your waveform within the
specified timeout value, it will stop trying to align and will report an alignment
failure.

<timeout> An integer from 1 to 120 seconds representing the time between triggers (not
the time that it takes to finish the alignment.)

Example This example sets the timeout value for the Autoalign feature to 10 seconds.
10 OUTPUT 707;"MTEST:STIMe 10"
20 END

Query :MTESt:STIMe?

The query returns timeout value for the Autoalign feature.

Returned Format [:MTESt:STIMe] <timeout><NL>

Example This example gets the timeout setting and prints the result on the computer
display.
10 OUTPUT 707;"MTEST:STIME?"
30 ENTER 707;Value
40 PRINT Value
50 END

20-45

Mask Test Commands
TITLe?

TITLe?

Query :MTESt:TITLe?

The :MTESt:TITLe? query returns the mask title which is a string of up to 23
characters. The title is displayed in the mask test dialog box and mask test tab
when a mask file is loaded.

Returned Format [:MTESt:TITLe] <mask_title><NL>

<mask_title> A string of up to 23 ASCII characters which is the mask title.

Example This example places the mask title in the string variable and prints the contents
to the computer’s screen.
10 DIM Title$[24]
20 OUTPUT 707;":MTEST:TITLE?"
30 ENTER 707;Title$
40 PRINT Title$
50 END

20-46

Mask Test Commands
TRIGger:SOURce

TRIGger:SOURce

Command :MTESt:TRIGger:SOURce {CHANnel<N> | EXTernal}

The :MTESt:TRIGger:SOURce command sets the channel or function to use as
the trigger. The EXTernal parameter is only available on the two channel
oscilloscopes. Mask testing must be enabled before using this command.

<N> An integer, 1 - 2, for two channel Infiniium oscilloscope.

An integer, 1 - 4, for all other Infiniium oscilloscope models.

Example This example sets the mask trigger source to channel 1.
10 OUTPUT 707;"MTEST:TRIGGER:SOURCE CHANNEL1"
20 END

Query :MTESt:TRIGger:SOURce?

The query returns the currenly selected mask test trigger source.

Returned Format [:MTESt:TRIGger] {CHANnel<N> | EXTernal}<NL>

Example This example gets the trigger source setting and prints the result on the
computer display.
10 DIM Amask_source$[30]
20 OUTPUT 707;"MTEST:TRIGGER:SOURCE?"
30 ENTER 707;Amask_source$
40 PRINT Amask_source$
50 END

21

Measure Commands

21-2

Measure Commands

The commands in the MEASure subsystem are used to make parametric
measurements on displayed waveforms.

These MEASure commands and queries are implemented in the
Infiniium Oscilloscopes.

• AREA
• CGRade:CROSsing
• CGRade:DCDistortion
• CGRade:EHEight
• CGRade:EWIDth
• CGRade:JITTer
• CGRade:QFACtor
• CLEar | SCRatch
• DEFine
• DELTatime
• DUTYcycle
• FALLtime
• FFT:DFRequency (delta frequency)
• FFT:DMAGnitude (delta magnitude)
• FFT:FREQuency
• FFT:MAGNitude
• FFT:PEAK1
• FFT:PEAK2
• FFT:THReshold
• FREQuency
• HISTogram:HITS
• HISTogram:M1S
• HISTogram:M2S
• HISTogram:M3S
• HISTogram:MAX
• HISTogram:MEAN

21-3

Measure Commands

• HISTogram:MEDian
• HISTogram:MIN
• HISTogram:PEAK
• HISTogram:PP
• HISTogram:STDDev
• NWIDth
• OVERshoot
• PERiod
• PHASe
• PREShoot
• PWIDth
• RESults?
• RISetime
• SCRatch | CLEar
• SENDvalid
• SETuptime
• SLEWrate
• SOURce
• STATistics
• TEDGe
• TMAX
• TMIN
• TVOLt
• VAMPlitude
• VAVerage
• VBASe
• VLOWer
• VMAX
• VMIDdle
• VMIN
• VPP
• VRMS
• VTIMe

21-4

Measure Commands

• VTOP
• VUPPer

E2688A High Speed Serial Software commands

The following MEASure commands are available when the E2688A High
Speed Serial Software is installed.

• CLOCk
• CLOCk:METHod
• CLOCk:VERTical:OFFset
• CLOCk:VERTical:RANGe
• TIEData
• Also see the MTESt:FOLDing command in the mask test subsystem.

E2681A EZJIT Jitter Analysis Software commands

The following MEASure commands are available when the E2681A
EZJIT Jitter Analysis Software is installed.

• CTCDutycycle
• CTCJitter
• CTCNwidth
• CTCPwidth
• DATarate
• HOLDtime
• JITTer:HISTogram
• JITTer:MEASurement
• JITTer:SPECtrum
• JITTer:STATistics
• JITTer:TRENd
• NCJitter
• SETuptime
• TIEClock2
• TIEData
• UNITinterval
• DUTYcycle, FREQuency, PERiod, and PHASe have an additional

<direction> parameter.

21-5

Measure Commands

FFT Commands

The :MEASure:FFT commands control the FFT measurements that are
accessible through the Measure subsystem.

Measurement Setup

To make a measurement, the portion of the waveform required for that
measurement must be displayed on the oscilloscope.

• For a period or frequency measurement, at least one and a half
complete cycles must be displayed.

• For a pulse width measurement, the entire pulse must be displayed.
• For a rise time measurement, the leading (positive-going) edge of the

waveform must be displayed.
• For a fall time measurement, the trailing (negative-going) edge of the

waveform must be displayed.
In jitter mode with jitter statistics enabled, measurements are made on
all data regardless of what is on screen.

User-Defined Thresholds

If you choose to set user-defined thresholds, they must be set before
actually sending the measurement command or query.

Measurement Error

If a measurement cannot be made because of a lack of data, because the
source waveform is not displayed, the requested measurement is not
possible (for example, a period measurement on an FFT waveform), or
for some other reason, the following results are returned:

• 9.99999E+37 is returned as the measurement result.
• If SENDvalid is ON, the error code is also returned.

Making Measurements

If more than one period, edge, or pulse is displayed, time measurements
are made on the first, left-most portion of the displayed waveform.

When any of the defined measurements are requested, the oscilloscope
first determines the top (100%) and base (0%) voltages of the waveform.
From this information, the oscilloscope determines the other important
voltage values (10%, 90%, and 50% voltage values) for making
measurements.

21-6

Measure Commands

The 10% and 90% voltage values are used in the rise time and fall time
measurements when standard thresholds are selected. The 50% voltage
value is used for measuring frequency, period, pulse width, and duty
cycle with standard thresholds selected.

You can also make measurements using user-defined thresholds instead
of the standard thresholds.

When the command form of a measurement is used, the oscilloscope is
placed in the continuous measurement mode. The measurement result
will be displayed on the front panel. There may be a maximum of 5
measurements running continuously. Use the SCRatch command to turn
off the measurements.

When the query form of the measurement is used, the measurement is
made one time, and the measurement result is returned.

• If the current acquisition is complete, the current acquisition is
measured and the result is returned.

• If the current acquisition is incomplete and the oscilloscope is
running, acquisitions will continue to occur until the acquisition is
complete. The acquisition will then be measured and the result
returned.

• If the current acquisition is incomplete and the oscilloscope is
stopped, the measurement result will be 9.99999e+37 and the
incomplete result state will be returned if SENDvalid is ON.

All measurements are made using the entire display, except for
VAVerage and VRMS which allow measurements on a single cycle.
Therefore, if you want to make measurements on a particular cycle,
display only that cycle on the screen.

Measurements are made on the displayed waveforms specified by the
SOURce command. The SOURce command lets you specify two sources.
Most measurements are only made on a single source. Some
measurements, such as the DELTatime measurement, require two
sources.

If the waveform is clipped, the measurement result may be questionable.
In this case, the value returned is the most accurate value that can be
made using the current scaling. You might be able to obtain a more
accurate measurement by adjusting the vertical scale to prevent the
waveform from being clipped.

21-7

Measure Commands
AREA

AREA

Command :MEASure:AREA {CYCLe | DISPlay}[,<source>]

The :MEASure:AREA command turns on the area measurement. The area
measurement measures between the waveform, or a selected cycle of the
waveform, and the waveform ground. When measuring Area, it is sometimes
useful to use the Subtract Math Operator to remove any dc offset from a
waveform you want to measure. Also see Math/FFT Functions for more details.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example turns on the area measurement which measures between the
waveform and ground. Only that portion of the waveform which is in the
waveform viewing area is measured.
10 OUTPUT 707;"MEASURE:AREA DISPLAY"
20 END

Query :MEASure:AREA?

The :MEASure:AREA? query returns the area measurement.

Returned Format [:MEASure:AREA]<value>[,<result_state>]<NL>

Example This example places the current selection for the area to be measured in the
string variable, Selection$, then prints the contents of the variable to the
computer’s screen.
10 DIM Selection$[50]
20 OUTPUT 707;"MEASure:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

21-8

Measure Commands
CGRade:CROSsing

CGRade:CROSsing

Command :MEASure:CGRade:CROSsing

The :MEASure:CGRade:CROSsing command enables the crossing level percent
measurement on the current eye pattern. Before using this command or query,
you must use the :DISPlay:CGRade command to enable the color grade
persistence feature. Also, there must be a full eye diagram on screen before a
valid measurement can be made.

Example This example measures the crossing level.
10 OUTPUT 707;"MEASURE:CGRADE:CROSSING"
20 END

Query :MEASure:CGRade:CROSsing?

The :MEASure:CGRade:CROSsing? query returns the crossing level percent
measurement of the current eye diagram on the color grade display. Before
using this command or query, you must use the :DISPlay:CGRade command to
enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:CROSsing]<value>[,<result_state>]<NL>

<value> The crossing level.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the current crossing level in the numeric variable, Value,
then prints the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:CROSSING?"
30 ENTER 707;Value
40 PRINT Value
50 END

21-9

Measure Commands
CGRade:DCDistortion

CGRade:DCDistortion

Command :MEASure:CGRade:DCDistortion <format>

The :MEASure:CGRade:DCDistortion command enables the duty cycle
distortion measurement on the current eye pattern. The parameter specifies
the format for reporting the measurement. Before using this command or query,
you must use the :DISPlay:CGRade command to enable the color grade
persistence feature. Also, there must be a full eye diagram on screen before a
valid measurement can be made.

<format> {TIME | PERCent}

Example This example measures the duty cycle distortion.
10 OUTPUT 707;"MEASURE:CGRADE:DCDISTORTION TIME"
20 END

Query :MEASure:CGRade:DCDistortion? <format>

The :MEASure:CGRade:DCDistortion query returns the duty cycle distortion
measurement of the color grade display. Before using this command or query,
you must use the :DISPlay:CGRade command to enable the color grade
persistence feature.

Returned Format [:MEASure:CGRade:DCDistortion]<value>[,<result_state>]<NL>

<value> The duty cycle distortion.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the current duty cycle distortion in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:CGRADE:DCDISTORTION? PERCENT"
30 ENTER 707;Value
40 PRINT Value
50 END

21-10

Measure Commands
CGRade:EHEight

CGRade:EHEight

Command :MEASure:CGRade:EHEight <format>

The :MEASure:CGRade:EHEight command enables the eye height
measurement on the current eye pattern. The parameter specifies the format
for reporting the measurement. Before using this command or query, you must
use the :DISPlay:CGRade command to enable the color grade persistence
feature. Also, there must be a full eye diagram on screen before a valid
measurement can be made.

<format> {TIME | PERCent}

Example This example measures the eye height.
10 OUTPUT 707;"MEASURE:CGRADE:EHEIGHT TIME"
20 END

Query :MEASure:CGRade:EHEight?

The :MEASure:CGRade:EHEight? query returns the eye height measurement
of the color grade display. Before using this command or query, you must use
the :DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:EHEight]<value>[,<result_state>]<NL>

<value> The eye height.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the current eye height in the numeric variable, Value, then
prints the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:EHEIGHT?"
30 ENTER 707;Value
40 PRINT Value
50 END

21-11

Measure Commands
CGRade:EWIDth

CGRade:EWIDth

Command :MEASure:CGRade:EWIDth

The :MEASure:CGRade:EWIDth command enables the eye width measurement
on the current eye pattern. Before using this command or query, you must use
the :DISPlay:CGRade command to enable the color grade persistence feature.
Also, there must be a full eye diagram on screen before a valid measurement
can be made.

Example This example measures the eye width.
10 OUTPUT 707;"MEASURE:CGRADE:EWIDTH"
20 END

Query :MEASure:CGRade:EWIDth?

The :MEASure:CGRade:EWIDth? query returns the eye width measurement of
the color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:EWIDth]<value>[,<result_state>]<NL>

<value> The eye width.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the current eye width in the numeric variable, Value, then
prints the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:EWIDTH?"
30 ENTER 707;Value
40 PRINT Value
50 END

21-12

Measure Commands
CGRade:JITTer

CGRade:JITTer

Command :MEASure:CGRade:JITTer <format>

The :MEASure:CGRade:JITTer measures the jitter at the eye diagram crossing
point. The parameter specifies the format, peak-to-peak or RMS, of the
returned results. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

<format> {PP | RMS}

Example This example measures the jitter.
10 OUTPUT 707;"MEASURE:CGRADE:JITTER RMS"
20 END

Query :MEASure:CGRade:JITTer? <format>

The :MEASure:CGRade:JITTer? query returns the jitter measurement of the
color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:JITTer]<value>[,<result_state>]<NL>

<value> The jitter.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the current jitter in the numeric variable, Value, then prints
the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:JITTER? RMS"
30 ENTER 707;Value
40 PRINT Value
50 END

21-13

Measure Commands
CGRade:QFACtor

CGRade:QFACtor

Command :MEASure:CGRade:QFACtor

The :MEASure:CGRade:QFACtor command measures the Q factor. Before
using this command or query, you must use the :DISPlay:CGRade command to
enable the color grade persistence feature. Also, there must be a full eye
diagram on screen before a valid measurement can be made.

Example This example measures the Q factor.
10 OUTPUT 707;"MEASURE:CGRADe:QFACTOR"
20 END

Query :MEASure:CGRade:QFACtor?

The :MEASure:CGRade:QFACtor? query returns the Q factor measurement of
the color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:QFACtor]<value>[,<result_state>]<NL>

<value> The Q factor.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the Q factor in the numeric variable, Value, then prints
the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:QFACTOR"
30 ENTER 707;Value
40 PRINT Value
50 END

21-14

Measure Commands
CLEar

CLEar

Command :MEASure:{CLEar | SCRatch}

The :MEASure:CLEar command clears the measurement results from the
screen and disables all previously enabled measurements.

Example This example clears the current measurement results from the screen.
10 OUTPUT 707;":MEASURE:CLEAR"
20 END

21-15

Measure Commands
CLOCk

CLOCk

Command :MEASure:CLOCk {{ON|1},CHANnel<N> | {OFF|0}}

The :MEASure:CLOCk command turns the recovered clock display on or off and
sets the the clock recovery channel source.

<N> is an integer, 1 - 4.

Example This example turns the recovered clock display on for channel 1.
10 OUTPUT 707;":MEASURE:CLOCK ON,CHANNEL1"
20 END

Query :MEASure:CLOCk?

The :MEASure :CLOCk? query returns the state of the recovered clock display.

Returned format [:MEASure:CLOCk] {1 | 0}<NL>

Example This example places the current setting of the recovered clock display in the
variable Setting, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:CLOCK?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

This command is only available when the E2688A High Speed Serial Software.

21-16

Measure Commands
CLOCk:METHod

CLOCk:METHod

Command :MEASure:CLOCk:METHod
{FOPLL,<data_rate>,<loop_bandwidth>} |

{SOPLL,<data_rate>,<loop_bandwidth>,
<damping_factor>} |

{EXPFOPLL <source>,{RISing | FALLing | BOTH},
<multiplier>,<clock_freq>,<track_freq>}

{EXPlicit, <source>, {RISing | FALLing | BOTH}
[,<multiplier>]} |

{FIXed,{AUTO | <data_rate>}}

The :MEASure:CLOCk:METHod command sets the clock recovery method to
FOPLL (first order phase-locked loop), SOPLL (second order phase-locked
loop, EXPFOPLL (Explicit First Order PLL), EXPlicit (Explicit Clock), or FIXed
(Constant Frequency).

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

<data_rate> A real number for the base data rate in Hertz.

<damping_
factor>

A real number for the damping factor of the PLL in bits per second.

<loop_
bandwidth>

A real number for the cutoff frequency for the PLL to track.

<multiplier> An integer used as the multiplication factor.

<clock_freq> A real number used for the clock frequency of the PLL.

<track_freq> A real number used for the tracking frequency of the PLL.

This command is only available when the E2688A High Speed Serial Software.

21-17

Measure Commands
CLOCk:METHod

Example This example sets the clock recovery method to phase-locked loop.
10 OUTPUT 707;":MEASURE:CLOCK:METHOD FOPLL,2E9,1.19E6"
20 END

Query :MEASure:CLOCk:METHod?

The :MEASure :CLOCk:METHod? query returns the state of the clock recovery
method.

Returned format [:MEASure:CLOCk:METHod]
{FOPLL,<data_rate>,<loop_bandwidth>} |
{SOPLL,<data_rate>,<loop_bandwidth>,<damping_factor>} |
{EXPFOPLL <source>,{RISing | FALLing | BOTH},
<multiplier>,<clock_freq>,<track_freq>} |
{EXPlict,<source>,{RISing | FALLing | BOTH},<multiplier>} |
{FIXed,{AUTO | <data_rate>}}

Example This example places the current setting of the clock recovery method in the
variable Setting, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:CLOCK:METHOD?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

21-18

Measure Commands
CLOCk::VERTical

CLOCk::VERTical

Command :MEASure:CLOCk:VERTical {AUTO | MANual}

The :MEASure:CLOCk:VERTIcal command sets the recovered clock vertical
scale mode to automatic or manual. In automatic mode, the oscilloscope
automatically selects the vertical scaling and offset. In manual mode, you can
set your own scaling and offset values.

Example This example sets the recovered clock vertical scale mode to automatic.
10 OUTPUT 707;":MEASURE:CLOCk:VERTical AUTO"
20 END

Query :MEASure:CLOCk:VERTical?

The :MEASure:CLOCk:VERTical? query returns the current recovered clock
vertical scale mode setting.

Returned format [:MEASure:CLOCk:VERTical] {AUTO | MANual}

Example This example places the current setting of the recovered clock vertical scale
mode in the string variable Setting$, then prints the contents of the variable to
the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:CLOCK:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2688A High Speed Serial Software is
installed.

21-19

Measure Commands
CLOCk::VERTical:OFFSet

CLOCk::VERTical:OFFSet

Command :MEASure:CLOCk:VERTical:OFFSet <offset>

The :MEASure:CLOCk:VERTial:OFFSet command sets the recovered clock
vertical offset.

<offset> A real number for the recovered clock vertical offset.

Example This example sets the clock recovery vertical offset to 1 volt.
10 OUTPUT 707;":MEASURE:CLOCK:VERTICAL:OFFSET 1"
20 END

Query :MEASure:CLOCk:VERTical:OFFSet?

The :MEASure:CLOCk:VERTIcal:OFFSet? query returns the clock recovery
vertical offset setting.

Returned format [:MEASure:CLOCk:VERTical:OFFSet] <value><NL>

<value> The clock recovery vertical offset setting.

Example This example places the current value of recovered clock vertical offset in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:CLOCK:VERTICAL:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2688A High Speed Serial Software is
installed.

21-20

Measure Commands
CLOCk:VERTical:RANGe

CLOCk:VERTical:RANGe

Command :MEASure:CLOCk:VERTical:RANGe <range>

The :MEASure:CLOCk:VERTial:RANGe command sets the recovered clock
vertical range.

<range> A real number for the full-scale recovered clock vertical range.

Example This example sets the recovered clock vertical range to 16 volts (2 volts times
8 divisions.)
10 OUTPUT 707;":MEASURE:CLOCK:VERTICAL:RANGE 16"
20 END

Query :MEASure:CLOCk:VERTical:RANGe?

The :MEASure:CLOCk:VERTical:RANGe? query returns the recovered clock
vertical range setting.

Returned Format [:MEASure:CLOCk:VERTical:RANGe] <value><NL>

<value> The recovered clock vertical range setting.

Example This example places the current value of recovered clock vertical range in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:CLOCK:VERTICAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2688A High Speed Serial Software is
installed.

21-21

Measure Commands
CTCDutycycle

CTCDutycycle

Command :MEASure:CTCDutycycle <source>,<direction>

The :MEASure:CYCDutycycle command measures the cycle-to-cycle duty cycle
jitter (%) of the waveform.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

<direction> {RISing | FALLing}

Specifies direction of wavcform edge to make measurement.

Example This example measures the cycle-to-cycle duty cycle on the rising edge of
channel 1.
10 OUTPUT 707;"MEASURE:CTCDUTYCYCLE CHANNEL1,RISING"
20 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-22

Measure Commands
CTCDutycycle

Query :MEASure:CTCDutycycle? <source>,<direction>

The :MEASure:CTCDutycycle? query returns the cycle-to-cycle duty cycle jitter
(%) measurement.

Returned Format [:MEASure:CTCDutycycle <value>[,<result_state>]<NL>

<value> The cycle-to-cycle duty cycle jitter (%) of the waveform.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the cycle-to-cycle duty cycle of channel 1 in the numeric
variable, Value, then prints the contents of the variable to the computer’s
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CTCDUTYCYCLE? CHANNEL1,RISING"
30 ENTER 707;Value
40 PRINT Value
50 END

21-23

Measure Commands
CTCJitter

CTCJitter

Command :MEASure:CTCJitter <source>,<direction>

The :MEASure:CYCJitter command measures the cycle-to-cycle jitter of the
waveform.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

<direction> {RISing | FALLing}

Specifies direction of waveform edge to make measurement.

Example This example measures the cycle-to-cycle jitter on the rising edge of channel 1.
10 OUTPUT 707;"MEASURE:CTCJITTER CHANNEL1,RISING"
20 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-24

Measure Commands
CTCJitter

Query :MEASure:CTCJitter? <source>,<direction>

The :MEASure:CTCJitter? query returns the cycle-to-cycle jitter time
measurement.

Returned Format [:MEASure:CTCJitter <value>[,<result_state>]<NL>

<value> The cycle-to-cycle jitter time of the waveform.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the cycle-to-cycle jitter of channel 1 in the numeric
variable, Value, then prints the contents of the variable to the computer’s
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CTCJITTER CHANNEL1,RISING"
30 ENTER 707;Value
40 PRINT Value
50 END

21-25

Measure Commands
CTCNwidth

CTCNwidth

Command :MEASure:CTCNwidth [<source>]

The :MEASure:CTCNwidth command measures the cycle-to-cycle -width jitter
of the waveform.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the cycle-to-cycle -width of channel 1.
10 OUTPUT 707;"MEASURE:CTCNWIDTH CHANNEL1"
20 END

Query :MEASure:CTCNwidth? [<source>]

The :MEASure:CTCNwidth? query returns the cycle-to-cycle -width jitter
measurement.

Returned Format [:MEASure:CTCNwidth <value>[,<result_state>]<NL>

<value> The cycle-to-cycle - width jitter of the waveform.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the cycle-to-cycle - width of channel 1 in the numeric
variable, Value, then prints the contents of the variable to the computer’s
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CTCNWIDTH CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-26

Measure Commands
CTCPwidth

CTCPwidth

Command :MEASure:CTCPwidth [<source>]

The :MEASure:CYCPwidth command measures the cycle-to-cycle + width jitter
of the waveform.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the cycle-to-cycle - width of channel 1.
10 OUTPUT 707;"MEASURE:CTCPWIDTH CHANNEL1"
20 END

Query :MEASure:CTCPwidth? [<source>]

The :MEASure:CTCPwidth? query returns the cycle-to-cycle + width jitter
measurement.

Returned Format [:MEASure:CTCPwidth <value>[,<result_state>]<NL>

<value> The cycle-to-cycle + width jitter of the waveform.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example places the cycle-to-cycle + width of channel 1 in the numeric
variable, Value, then prints the contents of the variable to the computer’s
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CTCPWIDTH CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-27

Measure Commands
DATarate

DATarate

Command :MEASure:DATarate [<source>]

The :MEASure:DATarate command measures the data rate in bits per second
for the selected source. Use the :MEASure:UNITinterval command/query to
measure the unit inverval of the source

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the data rate of channel 1.
10 OUTPUT 707;"MEASURE:DATARATE CHANNEL1"
20 END

Query :MEASure:DATarate? [<source>]

The :MEASure:DATarate? query returns the measured data rate.

Returned Format [:MEASure:DATarate] <value>[,<result_state>]<NL>

<value> Data rate frequency in bits per second for the selected source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current data rate of the channel 1 waveform in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:DATARATE? CHANNEL1”
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-28

Measure Commands
DEFine

DEFine

Command :MEASure:DEFine <meas_spec>

The :MEASure:DEFine command sets up the definition for measurements by
specifying the delta time, threshold, or top-base values. Changing these values
may affect other measure commands. Table 21-1 identifies the relationships
between user-defined values and other MEASure commands.

<meas_spec> {DELTatime | EWINdow | THResholds | TOPBase }

Table 21-1 :MEASure:DEFine Interactions

MEASure Commands DELTatime THResholds TOPBase

RISEtime x x

FALLtime x x

PERiod x x

FREQuency x x

VTOP x

VBASe x

VAMPlitude x

PWIDth x x

NWIDth x x

OVERshoot x x

DUTYcycle x x

DELTatime x x x

VRMS x x

PREShoot x x

VLOWer x x

VMIDdle x x

VUPPer x x

VAVerage x x

VARea x x

21-29

Measure Commands
DEFine

Command :MEASure:DEFine DELTatime,<start_edge_direction>,
<start_edge_number>,<start_edge_position>,
<stop_edge_direction>,<stop_edge_number>,
<stop_edge_position>

<edge
_direction> {RISing | FALLing | EITHer} for start and stop directions.

<edge
_number> An integer from 1 to 65534 for start and stop edge numbers.

<edge
_position> {UPPer | MIDDle | LOWer} for start and stop edge positions.

Command :MEASure:DEFine EWINdow,<start>,<stop>
[,<start_after>]

The :MEASure:DEFine EWINdow command is used to change the starting point
and the stopping point of the window used to make the eye pattern
measurements of eye height, eye crossing %, and eye q-factor. In addition, the
number of waveform hits can be set to ensure that enough data has been
collected to make accurate measurments.

<start> An integer from 1 to 100 for horizontal starting point. (Default value is 40%.)

<stop> An integer from 1 to 100 for horizontal stopping point. (Default value is 60%.)

<start_after> An integer from 1 to 63,488 for number of hits to acquire before making
measurements. (Default value is 1.)

21-30

Measure Commands
DEFine

Command :MEASure:DEFine THResholds,STANdard,<source>

:MEASure:DEFine TResholds,PERCent,<upper_pct>,
<middle_pct>,<lower_pct>,<source>

:MEASure:DEFine THResholds,VOLTage,<upper_volts>,
<middle_volts>,<lower_volts>,<source>

<source> {ALL | CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> s an integer, 1 - 4.

<upper_pct>
 <middle_pct>
 <lower_pct> An integer, - 25 to 125.

<upper_volts>
<middle_volts>
<lower_volts> A real number specifying voltage.

21-31

Measure Commands
DEFine

Command :MEASure:DEFine TOPBase,{{STANdard | HISTONLY |
MINMax | {<top_volts>,<base_volts>}},
{ALL|CHANnel<N>|FUNCtion<N>|WMEMory<N>}

<top_volts>
<base_volts> A real number specifying voltage.

Example This example sets the parameters for a time measurement from the first positive
edge at the upper threshold level to the second negative edge at the middle
threshold.
10 OUTPUT 707;":MEASURE:DEFINE DELTATIME,RISING,
1,UPPER,FALLING,2,MIDDLE"
20 END

If you specify one source, both parameters apply to that waveform. If you
specify two sources, the measurement is from the first positive edge on source
1 to the second negative edge on source 2.

Specify the source either using :MEASure:SOURce, or using the optional
<source> parameter when the DELTatime measurement is started.

21-32

Measure Commands
DEFine

Query :MEASure:DEFine? {DELTatime | EWINdow | THResholds|
TOPBase}<start>

The :MEASure:DEFine? query returns the current setup for the specified
parameter.

Returned Format [:MEASure:DEFine DELTatime] <start_edge_direction>,
<start_edge_number>,<start_edge_position>,
<stop_edge_direction>,<stop_edge_number>,
<stop_edge_position><NL>

[:MEASure:DEFine] EWINdow,<start>,<stop>,<start_after> <NL>

[:MEASure:DEFine] THResholds,{{STANdard} |
{PERcent,<upper_pct>,<middle_pct>,<lower_pct>} |
{VOLTage,<upper_volts>,<middle_volts>,<lower_volts>}},
{ALL|CHANnel<N>|FUNCtion<N>|WMEMory<N>}<NL>

[:MEASure:DEFine] TOPBase,{{STANdard}
|{<top_volts>,<base_volts>}}<NL>,{ALL|CHANnel<N>|
FUNCtion<N>|WMEMory<N>}

Example This example returns the current setup for the measurement thresholds to the
string variable, Setup$, then prints the contents of the variable to the
computer's screen.
10 DIM Setup$[50]!Dimension variable
20 OUTPUT 707;":MEASURE:DEFINE? THRESHOLDS"
30 ENTER 707; Setup$
40 PRINT Setup$
50 END

Use the Suffix Multiplier Instead

Using "mV" or "V" following the numeric value for the voltage value will cause
Error 138 - Suffix not allowed. Instead, use the convention for the suffix multiplier
as described in chapter 3, "Message Communication and System Functions."

21-33

Measure Commands
DELTatime

DELTatime

Command :MEASure:DELTatime [<source>[,<source>]]

The :MEASure:DELTatime command measures the delta time between two
edges. If one source is specified, the delta time from the leading edge of the
specified source to the trailing edge of the specified source is measured. If two
sources are specified, the delta time from the leading edge on the first source
to the trailing edge on the second source is measured.

Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:DELTatime command. The rest of
the parameters for this command are specified with the :MEASure:DEFine
command.

The necessary waveform edges must be present on the display. The query will
return 9.99999E+37 if the necessary edges are not displayed.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the delta time between channel 1 and
channel 2.
10 OUTPUT 707;":MEASURE:DELTATIME CHANNEL1,CHANNEL2"
20 END

21-34

Measure Commands
DELTatime

Query :MEASure:DELTatime? [<source>[,<source>]]

The :MEASure:DELTatime? query returns the measured delta time value.

Returned Format [:MEASure:DELTatime] <value>[,<result_state>]<NL>

<value> Delta time from the first specified edge on one source to the next specified edge
on another source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of delta time in the numeric variable,
Value, then prints the contents of the variable to the computer's screen. This
example assumes the source was set using :MEASure:SOURce.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:DELTATIME?"
30 ENTER 707;Value
40 PRINT Value
50 END

Related Commands :MEASure:DEFine DELTatime

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

21-35

Measure Commands
DUTYcycle

DUTYcycle

Command :MEASure:DUTYcycle [<source>],<direction>

The :MEASure:DUTYcycle command measures the ratio (%) of the positive
pulse width to the period. Sources are specified with the :MEASure:SOURce
command or with the optional <source> parameter following the
:MEASure:DUTYcycle command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

<direction> {RISing | FALLing}

Specifies direction of edge to start measurement.

Example This example measures the duty cycle of the channel 1 waveform.
10 OUTPUT 707;":MEASURE:DUTYCYCLE CHANNEL1"
20 END

The <direction> parameter is only available when the E2681A Jitter Analysis
Software is installed. When <direction> is specified, the <source> parameter is
required.

21-36

Measure Commands
DUTYcycle

Query :MEASure:DUTYcycle? [<source>],<direction>

The :MEASure:DUTYcycle? query returns the measured duty cycle (%) of the
specified source.

Returned Format [:MEASure:DUTYcycle] <value>[,<result_state>]<NL>

<value> The ratio (%) of the positive pulse width to the period.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current duty cycle of the channel 1 waveform in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:DUTYCYCLE? CHANNEL1”
30 ENTER 707;Value
40 PRINT Value
50 END

21-37

Measure Commands
FALLtime

FALLtime

Command :MEASure:FALLtime [<source>]

The :MEASure:FALLtime command measures the time at the upper threshold
of the falling edge, measures the time at the lower threshold of the falling edge,
then calculates the fall time. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:FALLtime
command.

The first displayed falling edge is used for the fall-time measurement. To make
this measurement requires 4 or more sample points on the falling edge of the
waveform.

Fall time = time at lower threshold point − time at upper threshold point.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the fall time of the channel 1 waveform.
10 OUTPUT 707;":MEASURE:FALLTIME CHANNEL1"
20 END

21-38

Measure Commands
FALLtime

Query :MEASure:FALLtime? [<source>]

The :MEASure:FALLtime? query returns the fall time of the specified source.

Returned Format [:MEASure:FALLtime] <value>[,<result_state>]<NL>

<value> Time at lower threshold - time at upper threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value for fall time in the numeric variable,
Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:FALLTIME? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

21-39

Measure Commands
FFT:DFRequency

FFT:DFRequency

Command :MEASure:FFT:DFRequency [<source>]

The :MEASure:FFT:DFRequency command enables the delta frequency
measurement. The source is specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:FFT:DFR command.

The source must be a function that is set to FFTMagnitude, or a waveform
memory that contains an FFT for this command and query to work.

<source> {FUNCtion<N> | WMEMory<N>}

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:DFRequency? [<source>]

The :MEASure:FFT:DFRequency? query returns the FFT delta frequency of the
specified peaks.

Returned Format [:MEASure:FFT:DFRequency]
<delta_frequency>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Related Commands :MEASure:FFT:PEAK1, :MEASure:FFT:PEAK2, :MEASure:FFT:THReshold

Example This example measures the frequency difference between the peaks specified
by the :meas:fft:peak1 and :meas:fft:peak2 for channel 4.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":func4:fftm chan4"!Perform FFT on channel 4
30 OUTPUT 707;":func4:disp on"!Display the FFT
40 OUTPUT 707;":meas:FFT:thr -47"!Set peak threshold at -47 dBm
50 OUTPUT 707;":meas:FFT:Peak1 2"!Meas diff between peak 2 and 3
60 OUTPUT 707;":meas:FFT:Peak2 3"
70 OUTPUT 707;":meas:FFT:dfr func4"!Perform dfrequency meas
80 OUTPUT 707;":meas:FFT:dfr? func4"!Query oscilloscope for
measurement
90 ENTER 707;Frequency
100 PRINT Frequency
110 END

21-40

Measure Commands
FFT:DMAGnitude

FFT:DMAGnitude

Command :MEASure:FFT:DMAGnitude [<source>]

The :MEASure:FFT:DMAGnitude command enables the delta magnitude
measurement. The source is specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:FFT command.

The source must be a function that is set to FFT, or a waveform memory that
contains an FFT for this command and query to work.

<source> {FUNCtion<N> | WMEMory<N>}

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:DMAGnitude? [<source>]

The :MEASure:FFT:DMAGnitude? query returns the delta magnitude of the
specified peaks.

Returned Format [:MEASure:FFT:DMAGnitude]
<delta_magnitude>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Related Commands :MEASure:FFT:PEAK1, :MEASure:FFT:PEAK2, :MEASure:FFT:THReshold

Example This example measures the magnitude difference between the peaks specified
by the :meas:fft:peak1 and :meas:fft:peak2 for channel 4.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":func4:fftm chan4"!Perform FFT on channel 4
30 OUTPUT 707;":func4:disp on"!Display the FFT
40 OUTPUT 707;":meas:FFT:thr -47"!Set peak threshold at -47 dBm
50 OUTPUT 707;":meas:FFT:Peak1 2"!Meas diff between peak 2 and 3
60 OUTPUT 707;":meas:FFT:Peak2 3"
70 OUTPUT 707;":meas:FFT:dmag func4"!Perform dfrequency meas
80 OUTPUT 707;":meas:FFT:dmag? func4"!Query oscilloscope for
measurement
90 ENTER 707;Magnitude
100 PRINT Magnitude
110 END

21-41

Measure Commands
FFT:FREQuency

FFT:FREQuency

Command :MEASure:FFT:FREQuency [<source>]

The :MEASure:FFT:FREQuency command enables the frequency
measurement. The source is specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:FFT command.

The source must be a function that is set to FFT, or a waveform memory that
contains an FFT for this command and query to work.

<source> {FUNCtion<N> | WMEMory<N>}

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:FREQuency? [<source>]

The :MEASure:FFT:FREQuency? query returns the frequency measurement.

Returned Format [:MEASure:FFT:FREQuency] <frequency>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example measures the frequency the peak specified by the :meas:fft:peak1
for channel 4.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":func4:fftm chan4"!Perform FFT on channel 4
30 OUTPUT 707;":func4:disp on"!Display the FFT
40 OUTPUT 707;":meas:FFT:thr -47"!Set peak threshold at -47 dBm
50 OUTPUT 707;":meas:FFT:Peak1 2"!Meas amplitude of peak 2
60 OUTPUT 707;":meas:FFT:freq func4"!Perform frequency meas
70 OUTPUT 707;":meas:FFT:freq? func4"!Query oscilloscope for
measurement
80 ENTER 707;Frequency
90 PRINT Frequency
100 END

21-42

Measure Commands
FFT:MAGNitude

FFT:MAGNitude

Command :MEASure:FFT:MAGNitude [<source>]

The :MEASure:FFT:MAGNitude command measures the magnitude of the FFT.
The source is specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:FFT command.

The source must be a function that is set to FFT, or a waveform memory that
contains an FFT for this command and query to work.

<source> {FUNCtion<N> | WMEMory<N>}

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:MAGNitude?

The :MEASure:FFT:MAGNitude? query returns the magnitude value of the
FFT.

Returned Format [:MEASure:FFT:FMAGNitude] <magnitude>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example measures the magnitude of the peak specified by the
:meas:fft:peak for channel 4.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":func4:fftm chan4"!Perform FFT on channel 4
30 OUTPUT 707;":func4:disp on"!Display the FFT
40 OUTPUT 707;":meas:FFT:thr -47"!Set peak threshold at -47 dBm
50 OUTPUT 707;":meas:FFT:Peak1 2"!Meas magnitude of peak 2
60 OUTPUT 707;":meas:FFT:magn func4"!Perform dfrequency meas
70 OUTPUT 707;":meas:FFT:magn? func4"!Query oscilloscope for
measurement
80 ENTER 707;Magnitude
90 PRINT Magnitude
100 END

21-43

Measure Commands
FFT:PEAK1

FFT:PEAK1

Command :MEASure:FFT:PEAK1 <1st_peak_number>

The :MEASure:FFT:PEAK1command sets the peak number of the first peak for
FFT measurements. The source is specified with the :MEASure:SOURce
command as FUNCtion<N> or WMEMory<N>.

<1st_peak
_number> An integer, 1 to 100 specifying the number of the first peak.

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:PEAK1?

The :MEASure:FFT:PEAK1? query returns the peak number currently set as
the first peak.

Returned Format [:MEASure:FFT:PEAK1] <1st_peak_number><NL>

See Also :MEASure:FFT:THReshold

Also see the example for :MEASure:FFT:DFRequency in this chapter.

21-44

Measure Commands
FFT:PEAK2

FFT:PEAK2

Command :MEASure:FFT:PEAK2 <2nd_peak_number>

The :MEASure:FFT:PEAK2 command sets the peak number of the second peak
for FFT measurements. The source is specified with the :MEASure:SOURce
command as FUNCtion<N> or WMEMory<N>.

<2nd_peak
_number>

An integer, 1 to 100 specifying the number of the second peak.

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:PEAK2?

The :MEASure:FFT:PEAK2? query returns the peak number currently set as
the second peak.

Returned Format [:MEASure:FFT:PEAK1] <2nd_peak_number><NL>

See Also :MEASure:FFT:THReshold

Also see the example for :MEASure:FFT:DFRequency in this chapter.

21-45

Measure Commands
FFT:THReshold

FFT:THReshold

Command :MEASure:FFT:THReshold <threshold_value>

The :MEASure:FFT:THReshold command sets the peak search threshold value
in dB. The dB after the threshold value is optional.

<threshold
_value> A real number specifying the threshold for peaks.

Query :MEASure:FFT:THReshold?

The :MEASure:FFT:THReshold? query returns the peak search threshold value.

Returned Format [:MEASure:FFT:THReshold] <threshold_value><NL>

These :MEASure commands also operate on FFT functions:

See Also Also see the example for :MEASure:FFT:DFRequency in this chapter.

Measure Command Measurement Performed

:TMAX The frequency of the maximum value in the spectrum.

:TMIN The frequency of the minimum value in the spectrum.

:VMAX The maximum value in the spectrum.

:VMIN The minimum value in the spectrum.

:VPP The range of values in the spectrum.

:VTIM The value at a specified frequency.

21-46

Measure Commands
FREQuency

FREQuency

Command :MEASure:FREQuency [<source>],<direction>

The :MEASure:FREQuency command measures the frequency of the first
complete cycle on the screen using the mid-threshold levels of the waveform
(50% levels if standard thresholds are selected). The source is specified with
the :MEASure:SOURce command or with the optional parameter following the
:MEASure:FREQuency command.

The algorithm is:

If the first edge on the screen is rising,

then

frequency = 1/(time at second rising edge - time at first rising edge)

else

frequency = 1/(time at second falling edge - time at first falling edge).

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

<direction> {RISing | FALLing}

Specifies direction of edge for measurement.

Example This example measures the frequency of the channel 1 waveform.
10 OUTPUT 707;":MEASURE:FREQUENCY CHANNEL1"
20 END

The <direction> parameter is only available when the E2681A Jitter Analysis
Software is installed. When <direction> is specified, the <source> parameter is
required.

21-47

Measure Commands
FREQuency

Query :MEASure:FREQuency? [<source>],<direction>

The :MEASure:FREQuency? query returns the measured frequency.

Returned Format [:MEASure:FREQuency] <value>[,<result_state>]<NL>

<value> The frequency value in Hertz of the first complete cycle on the screen using the
mid-threshold levels of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current frequency of the waveform in the numeric
variable, Freq, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:FREQUENCY? CHANNEL1"
30 ENTER 707;Freq
40 PRINT Freq
50 END

21-48

Measure Commands
HISTogram:HITS

HISTogram:HITS

Command :MEASure:HISTogram:HITS [<source>]

The :MEASure:HISTogram:HITS command measures the number of hits within
the histogram. The source is specified with the MEASure:SOURce command
or with the optional parameter following the HITS command. The
HISTogram:HITS measurement only applies to the histogram waveform or
memories containing histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Example This example measures the number of hits within the histogram stored in
WMEMory1.
10 OUTPUT 707;"MEASURE:HISTOGRAM:HITS WMEMORY1"
20 END

21-49

Measure Commands
HISTogram:HITS

Query :MEASure:HISTogram:HITS? [<source>]

The :MEASure:HISTogram:HITS? query returns the number of hits within the
histogram.

Returned Format [:MEASure:HISTogram:HITS]<value>[,<result_state>]<NL>

<value> The number of hits in the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the number of hits within the current histogram and prints
the result to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:HITS? WMEMORY1"
30 ENTER 707;Histhits
40 PRINT Histhits
50 END

21-50

Measure Commands
HISTogram:M1S

HISTogram:M1S

Command :MEASure:HISTogram:M1S [<source>]

The :MEASure:HISTogram:M1S command enables the percentage of points
measurement that are within one standard deviation of the mean of the
histogram. The source is specified with the MEASure:SOURce command or
with the optional parameter following the M1S command. The HISTogram:M1S
measurement only applies to the histogram waveform or memories containing
histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Example This example measures the percentage of points that are within one standard
deviation of the mean of the histogram of the data stored in waveform memory 3.
10 OUTPUT 707;"MEASURE:HISTOGRAM:M1S WMEMORY3"
20 END

21-51

Measure Commands
HISTogram:M1S

Query :MEASure:HISTogram:M1S? [<source>]

The :MEASure:HISTogram:M1S? query returns the measurement of the
percentage of points within one standard deviation of the mean of the histogram.

Returned Format [:MEASure:HISTogram:M1S]<value>[,<result_state>]<NL>

<value> The percentage of points within one standard deviation of the mean of the
histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the percentage of points within one standard deviation of
the mean of the current histogram and prints the result to the computer’s
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:M1S? WMEMORY1"
30 ENTER 707;Histm1s
40 PRINT Histm1s
50 END

21-52

Measure Commands
HISTogram:M2S

HISTogram:M2S

Command :MEASure:HISTogram:M2S [<source>]

The :MEASure:HISTogram:M2S command enables the percentage of points
measurement that are within two standard deviations of the mean of the
histogram. The source is specified with the MEASure:SOURce command or
with the optional parameter following the M2S command. The HISTogram:M2S
measurement only applies to the histogram waveform or memories containing
histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Example This example measures the percentage of points that are within two standard
deviations of the mean of the histogram whose source is specified using the
MEASure:SOURce command.
10 OUTPUT 707;"MEASURE:HISTOGRAM:M2S WMEMORY1"
20 END

21-53

Measure Commands
HISTogram:M2S

Query :MEASure:HISTogram:M2S? [<source>]

The :MEASure:HISTogram:M2S? query returns the measurement of the
percentage of points within two standard deviations of the mean of the
histogram.

Returned Format [:MEASure:HISTogram:M2S]<value>[,<result_state>]<NL>

<value> The percentage of points within two standard deviations of the mean of the
histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the percentage of points within two standard deviations
of the mean of the current histogram and prints the result to the computer’s
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:M2S? WMEMORY1"
30 ENTER 707;Histm2s
40 PRINT Histm2s
50 END

21-54

Measure Commands
HISTogram:M3S

HISTogram:M3S

Command :MEASure:HISTogram:M3S [<source>]

The :MEASure:HISTogram:M3S command enables the percentage of points
measurement that are within three standard deviations of the mean of the
histogram. The source is specified with the MEASure:SOURce command or
with the optional parameter following the M3S command. The HISTogram:M3S
measurement only applies to the histogram waveform or memories containing
histograms.

The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Example This example measures the percentage of points that are within three standard
deviations of the mean of the histogram.
10 OUTPUT 707;"MEASURE:HISTOGRAM:M3S HISTOGRAM"
20 END

21-55

Measure Commands
HISTogram:M3S

Query :MEASure:HISTogram:M3S? [<source>]

The :MEASure:HISTogram:M3S? query returns the measurement of the
percentage of points within three standard deviations of the mean of the
histogram.

Returned Format [:MEASure:HISTogram:M3S]<value>[,<result_state>]<NL>

<value> The percentage of points within three standard deviations of the mean of the
histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the percentage of points within three standard deviations
of the mean of the current histogram and prints the result to the computer’s
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:M3S? WMEMORY1"
30 ENTER 707;Histm3s
40 PRINT Histm3s
50 END

21-56

Measure Commands
HISTogram:MAX?

HISTogram:MAX?

Query :MEASure:HISTogram:MAX? [<source>]

The :MEASure:HISTogram:MAX? query returns the measurement of the
maximum value of the histogram.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:MAX]<value>[,<result_state>]<NL>

<value> The maximum value of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the maximum value of the current histogram and prints
the result to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:MAX?"
30 ENTER 707;Histmax
40 PRINT Histmax
50 END

21-57

Measure Commands
HISTogram:MEAN?

HISTogram:MEAN?

Query :MEASure:HISTogram:MEAN? [<source>]

The :MEASure:HISTogram:MEAN? query returns the measurement of the mean
of the histogram.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:MEAN]<value>[,<result_state>]<NL>

<value> The mean of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the mean of the current histogram and prints the result
to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:MEAN? WMEMORY1"
30 ENTER 707;Histmean
40 PRINT Histmean
50 END

21-58

Measure Commands
HISTogram:MEDian?

HISTogram:MEDian?

Query :MEASure:HISTogram:MEDian? [<source>]

The :MEASure:HISTogram:MEDian? query returns the measurement of the
median of the histogram.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:MEDian]<value>[,<result_state>]<NL>

<value> The median of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the median of the current histogram and prints the result
to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:MEDIAN? WMEMORY1"
30 ENTER 707;Histmed
40 PRINT Histmed
50 END

21-59

Measure Commands
HISTogram:MIN?

HISTogram:MIN?

Query :MEASure:HISTogram:MIN? [<source>]

The :MEASure:HISTogram:MIN? query returns the measurement of the
maximum value of the histogram.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:MIN]<value>[,<result_state>]<NL>

<value> The minimum value of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the minimum value of the current histogram and prints
the result to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:MIN?"
30 ENTER 707;Histmin
40 PRINT Histmin
50 END

21-60

Measure Commands
HISTogram:PEAK?

HISTogram:PEAK?

Query :MEASure:HISTogram:PEAK? [<source>]

The :MEASure:HISTogram:PEAK? query returns the number of hits in the
greatest peak of the histogram measurement.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:PEAK]<value>[,<result_state>]<NL>

<value> The number of hits in the histogram peak.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the number of hits in the greatest peak of the current
histogram and prints the result to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:PEAK? WMEMORY1"
30 ENTER 707;Histpeak
40 PRINT Histpeak
50 END

21-61

Measure Commands
HISTogram:PP?

HISTogram:PP?

Query :MEASure:HISTogram:PP? [<source>]

The :MEASure:HISTogram:PP? query returns the measurement of the width of
the histogram.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:PP]<value>[,<result_state>]<NL>

<value> The width of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the width of the current histogram and prints the result
to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:PP? WMEMORY1"
30 ENTER 707;Histpp
40 PRINT Histpp
50 END

21-62

Measure Commands
HISTogram:STDDev?

HISTogram:STDDev?

The :MEASure:HISTogram:STDDev query returns the standard deviation of the
histogram.

Query :MEASure:HISTogram:STDDev? [<source>]

The :MEASure:HISTogram:STDDev? query returns the measurement of
standard deviation of the histogram.

Returned Format [:MEASure:HISTogram:STDDev]<value>[,<result_state>]<NL>

<value> The standard deviation of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result.
Refer to the MEASure:RESults command, for a list of the result states.

Example This example returns the standard deviation of the histogram whose source is
specified using the MEASure:SOURce command and prints the result to the
computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:STDDEV? WMEMORY1"
30 ENTER 707;Histsttd
40 PRINT Histsttd
50 END

21-63

Measure Commands
HOLDtime

HOLDtime

Command :MEASure:HOLDtime [<data_source>,<data_source_dir>,
<clock_source>,<clock_ source_dir>]

The :MEASure:HOLDtime command measures the hold time between the
specified clock and data sources.

<data_source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<clock_source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

<data_source
_dir>

{RISing | FALLing | BOTH}

Selects the direction of the data source edge.

<clock_source
_dir>

{RISing | FALLing}

Selects the direction of the clock source edge.

Example This example measures the hold time from the rising edge of channel 1 to the
rising edge of channel 2.
10 OUTPUT 707;":MEASURE:HOLDTIME CHAN1,RIS,CHAN2,RIS"
20 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-64

Measure Commands
HOLDtime

Query :MEASure:HOLDtime?
[<data_source>,<data_source_dir>,<clock_source>,
<clock_ source_dir>]

The :MEASure:HOLDtime? query returns the measured hold time between the
specified clock and data source.

Returned Format {:MEASure:SETuptime] <value><NL>

<value> Hold time in seconds.

Example This example places the current value of hold time in the numeric variable,Time,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:HOLDTIME? CHAN1,RIS,CHAN2,RIS"
30 ENTER 707;Time
40 PRINT Time
50 END

See Also Refer to the :MEASure:RESults? query for information on the results returned
and how they are affected by the SENDvalid command. Refer to the individual
measurements for information on how the result state is returned.

21-65

Measure Commands
JITTer:HISTogram

JITTer:HISTogram

Command :MEASure:JITTer:HISTogram {{ON|1} | {OFF|0}}

The :MEASure:JITTer:HISTogram command turns the measurement histogram
display on or off when a jitter measurement is displayed.

Example This example turns the jitter measurement histogram display on.
10 OUTPUT 707;"MEASURE:JITTER:HISTOGRAM ON"
20 END

Query :MEASure:JITTer:HISTogram?

The :MEASure :JITTer:HISTogram? query returns the state of measurement
histogram display.

Returned format [:MEASure:JITTer:HISTogram] {1 | 0}

Example This example places the current setting of the jitter spectrum mode in the
variable Setting, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:HISTOGRAM?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

This command is only available when the E2681A Jitter Analysis Software or the
N5400A/N5401A Software is installed.

21-66

Measure Commands
JITTer:MEASurement

JITTer:MEASurement

Command :MEASure:JITTer:MEASurement {MEASurement<N>}

The :MEASure :JITTer:MEASurement command selects which measurement
displayed on the oscilloscope you are performing the jitter analysis on.
MEASurement1 is the left-most measurement on the display.

<N> {1 | 2 | 3 | 4 | 5}

Example This example assigns measurement 2 to the jitter measurement analysis.
10 OUTPUT 707;":MEASURE:JITTER:MEASUREMENT2"
20 END

Query :MEASure:JITTer:MEASurement?

The :MEASure :JITTer:MEASurement? query returns the measurement
number you are performing the jitter analysis on. If no measurements are being
displayed on the oscilloscope, the query will return a null string.

Returned format [:MEASure:JITTer:MEASurement MEASurement<N>]

Example This example places the current measurement number that you are performing
jitter analysis on in the string variable Setting$, then prints the contents of the
variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:MEASUREMENT?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-67

Measure Commands
JITTer:SPECtrum

JITTer:SPECtrum

Command :MEASure:JITTer:SPECtrum {{ON|1} | {OFF|0}}

The :MEASure:JITTer:SPECtrum command turns the jitter spectrum display
on or off when a jitter measurement is displayed.

Example This example turns the jitter measurement spectrum display on.
10 OUTPUT 707;":JITTER:SPECTRUM ON"
20 END

Query :MEASure:JITTer:SPECtrum?

The :MEASure :JITTer:SPECtrum? query returns the state of jitter spectrum
display.

Returned format [:MEASure:JITTer:SPECtrum] {1 | 0}

Example This example places the current setting of the jitter spectrum mode in the
variable Setting, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-68

Measure Commands
JITTer:SPECtrum:HORizontal

JITTer:SPECtrum:HORizontal

Command :MEASure:JITTer:SPECtrum:HORizontal {AUTO | MANual}

The :MEASure:JITTer:SPECtrum:HORizontal command sets the jitter
spectrum horizontal mode to automatic or manual. In automatic mode, the
oscilloscope automatically selects the horizontal scaling and center frequency.
In manual mode, you can set your own horiontal scaling and center frequency
values.

Example This example sets the jitter spectrum horizontal mode to automatic.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL AUTO"
20 END

Query :MEASure:JITTer:SPECtrum:HORizontal?

The :MEASure:JITTer:SPECtrum:HORizontal? query returns the current jitter
spectrum horizontal mode setting.

Returned format [:MEASure:JITTer:SPECtrum:HORizontal] {AUTO | MANual}

Example This example places the current setting of the jitter trend horizontal mode in
the string variable Setting$, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-69

Measure Commands
JITTer:SPECtrum:HORizontal:POSition

JITTer:SPECtrum:HORizontal:POSition

Command :MEASure:JITTer:SPECtrum:HORizontal:POSition
<position>

The :MEASure:JITTer:SPECtrum:HORizontal:POSition command sets the jitter
spectrum horizontal center frequency position.

<position> A real number for the center frequency position in Hertz.

Example This example sets the jitter spectrum horizontal center frequency position to
250 kHz.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL:POSITION
250E3"
20 END

Query :MEASure:JITTer:SPECtrum:HORizontal:POSition?

The :MEASure:JITTer:SPECtrum:HORizontal:POSition? query returns the
current jitter spectrum horizontal center frequency position setting.

Returned format [:MEASure:JITTer:SPECtrum:HORizontal:POSition] <value><NL>

<value> The jitter spectrum horizontal center frequency setting.

Example This example places the current setting of the jitter trend horizontal center
frequency position in the variable Value, then prints the contents of the variable
to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL:POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-70

Measure Commands
JITTer:SPECtrum:HORizontal:RANGe

JITTer:SPECtrum:HORizontal:RANGe

Command :MEASure:JITTer:SPECtrum:HORizontal:RANGe <range>

The :MEASure:JITTer:SPECtrum:HORizontal:RANGe command sets the jitter
spectrum horizontal range.

<range> A real number for the horizontal frequency range in Hertz.

Example This example sets the jitter spectrum horizontal range to 10 GHz (1 GHz/div).
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL:RANGE 10E9"
20 END

Query :MEASure:JITTer:SPECtrum:HORizontal:RANGe?

The :MEASure:JITTer:SPECtrum:HORizontal:RANGe? query returns the
current jitter spectrum horizontal range setting.

Returned format [:MEASure:JITTer:SPECtrum:HORizontal:RANGe] <value><NL>

<value> The jitter spectrum horizontal range setting.

Example This example places the current setting of the jitter trend horizontal range in
the variable Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-71

Measure Commands
JITTer:SPECtrum:VERTical

JITTer:SPECtrum:VERTical

Command :MEASure:JITTer:SPECtrum:VERTical {AUTO | MANual}

The :MEASure:JITTer:SPECtrum:VERTical command sets the jitter spectrum
vertical mode to automatic or manual. In automatic mode, the oscilloscope
automatically selects the vertical scaling and offset. In manual mode, you can
set your own vertical scaling and offset values.

Example This example sets the jitter spectrum vertical mode to automatic.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL AUTO"
20 END

Query :MEASure:JITTer:SPECtrum:VERTical?

The :MEASure:JITTer:SPECtrum:VERTical? query returns the current jitter
spectrum vertical mode setting.

Returned format [:MEASure:JITTer:SPECtrum:VERTical] {AUTO | MANual}

Example This example places the current setting of the jitter spectrum vertical mode in
the string variable Setting$, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-72

Measure Commands
JITTer:SPECtrum:VERTical:OFFSet

JITTer:SPECtrum:VERTical:OFFSet

Command :MEASure:JITTer:SPECtrum:VERTical:OFFSet <offset>

The :MEASure:JITTer:SPECtrum:VERTial:OFFSet command sets the jitter
spectrum vertical offset.

<offset> A real number for the vertical offset of the jitter measurement spectrum.

Example This example sets the jitter spectrum vertical offset to 2 ns.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL:OFFSET 10E-9"
20 END

Query :MEASure:JITTer:SPECtrum:VERTical:OFFSet?

The :MEASure:JITTer:SPECtrum:VERTIcal:OFFSet? query returns the jitter
spectrum vertical offset time.

Returned format [:MEASure:JITTer:SPECtrum:VERTical:OFFSet] <value>
[,<result_state>]<NL>

<value> The jitter vertical spectrum offset time setting.

Example This example places the current value of jitter spectrum vertical offset in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-73

Measure Commands
JITTer:SPECtrum:VERTical:RANGe

JITTer:SPECtrum:VERTical:RANGe

Command :MEASure:JITTer:SPECtrum:VERTical:RANGe <range>

The :MEASure:JITTer:SPECtrum:VERTial:RANGe command sets the jitter
spectrum vertical range.

<range> A real number for the full-scale vertical range for the jitter measurement
spectrum.

Example This example sets the jitter spectrum vertical range to 4 ns (500 ps/div X 8 div).
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL:RANGE 4E-9"
20 END

Query :MEASure:JITTer:SPECtrum:VERTical:RANGe?

The :MEASure:JITTer:SPECtrum:VERTIcal:RANGe? query returns the jitter
spectrum range time setting.

Returned Format [:MEASure:JITTer:SPECtrum:VERTical:RANGe] <value>
[,<result_state>]<NL>

<value> The jitter spectrum vertical range setting.

Example This example places the current value of jitter spectrum vertical range in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-74

Measure Commands
JITTer:SPECtrum:WINDow

JITTer:SPECtrum:WINDow

Command :MEASure:JITTer:SPECtrum:WINDow {RECTangular |
HANNing | FLATtop}

The :MEASure:JITTer:SPECtrum:WINDow command sets the jitter spectrum
window mode to rectangular, Hanning, or flattop.

Example This example sets the jitter spectrum window mode to Hanning.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:WINDOW HANNING"
20 END

Query :MEASure:JITTer:SPECtrum:WINDow?

The :MEASure:JITTer:SPECtrum:WINDow? query returns the current jitter
spectrum window mode setting.

Returned format [:MEASure:JITTer:SPECtrum:WINDow] {RECTangular | HANNing |
FLATtop}<NL>

Example This example places the current setting of the jitter spectrum window mode in
the string variable Setting$, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:WINDOW?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-75

Measure Commands
JITTer:STATistics

JITTer:STATistics

Command :MEASure:JITTer:STATistics {{ON|1} | {OFF|0}}

The :MEASure:JITTer:STATistics command enables or disables jitter mode and
allows you to view: measurement histogram (:MEASure:JITTer:HISTogram),
measurement trend (:MEASure:JITTer:TRENd), and jitter spectrum
(:MEASure:JITTer:SPsECtrum) if they are enabled. It also turns on the ability
to measure all edges in the waveform; not just the first edge on screen.

Example This example turns the jitter measurement statistics on.
10 OUTPUT 707;":JITTer:STATISTICS ON"
20 END

Query :MEASure:JITTer:STATistics?

The :MEASure :JITTer:STATistics? query returns the state of jitter statistics.

Returned format [:MEASure:JITTer:STATistics] {1 | 0}

Example This example places the current setting of the jitter statistics mode in the
variable Setting, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:STATISTICS?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-76

Measure Commands
JITTer:TRENd

JITTer:TRENd

Command :MEASure:JITTer:TRENd {{ON|1} | {OFF|0}}

The :MEASure:JITTer:TRENd command turns the jitter measurement trend
display on or off. When on, trend plots measurement results time corelated to
the waveform being measured.

Example This example turns the jitter measurement trend display on.
10 OUTPUT 707;":MEASURE:JITTER:TREND ON"
20 END

Query :MEASure:JITTer:TRENd?

The :MEASure :JITTer:TRENd? query returns the state of jitter trend display.

Returned format [:MEASure:JITTer:TRENd] {1 | 0}

Example This example places the current setting of the jitter trend mode in the string
variable Setting$, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:TREND?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-77

Measure Commands
JITTer:TRENd:SMOoth

JITTer:TRENd:SMOoth

Command :MEASure:JITTer:TRENd:SMOoth {{ON|1} | {OFF|0}}

The :MEASure:JITTer:TRENd:SMOoth command sets jitter trend smoothing to
on or off. When on, smoothing creates a running average smoothed by the
number of points set by the :JITTer:TRENd:SMOoth:POINts command.

Example This example sets the jitter trebd smoothing mode to on..
10 OUTPUT 707;":MEASURE:JITTer:TREND:SMOOTH ON"
20 END

Query :MEASure:JITTer:TRENd:SMOoth?

The :MEASure:JITTer:TRENd:SMOoth? query returns the current jitter trend
smoothing mode setting.

Returned format [:MEASure:JITTer:TRENd:SMOoth] {1 | 0}

Example This example places the current setting of the jitter trend smoothing mode in
the string variable Setting$, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:TREND:SMOOTH?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-78

Measure Commands
JITTer:TREND:SMOoth:POINts

JITTer:TREND:SMOoth:POINts

Command :MEASure:JITTer:TREND:SMOoth:POINts <points>

The :MEASure:JITTer:TRENd:SMOoth:POINts command sets the number of
points as a set size for the data smoothing feature.

<points> odd integers, 3 to 1001. If out of range, the number will be rounded to nearest
lower odd integer.

Example This example sets the jitter trend smoothing points to 7.
10 OUTPUT 707;":MEASURE:JITTER:TREND:SMOOTH:POINTS 7"
20 END

Query :MEASure:JITTer:TREND:SMOoth:POINts?

The :MEASure:JITTer:TRENd:SMOoth:POINts? query returns the current
setting for jitter trend smoothing points.

Returned format [:MEASure:JITTer:TRENd:SMOoth:POINts] <value><NL>

<value> The jitter offset smoothing points setting.

Example This example places the current value of jitter trend smoothing points in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:JITTER:TREND:SMOOTH:POINTS?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-79

Measure Commands
JITTer:TRENd:VERTical

JITTer:TRENd:VERTical

Command :MEASure:JITTer:TRENd:VERTical {AUTO | MANual}

The :MEASure:JITTer:TRENd:VERTIcal command sets the jitter trend vertical
mode to automatic or manual. In automatic mode, the oscilloscope
automatically selects the vertical scaling and offset. In manual mode, you can
set your own scaling and offset values.

Example This example sets the jitter trend vertical mode to automatic.
10 OUTPUT 707;":MEASURE:JITTer:TRENd:VERTical AUTO"
20 END

Query :MEASure:JITTer:TRENd:VERTical?

The :MEASure:JITTer:TRENd:VERTical? query returns the current jitter trend
vertical mode setting.

Returned format [:MEASure:JITTer:TRENd:VERTical] {AUTO | MANual}

Example This example places the current setting of the jitter trend vertical mode in the
string variable Setting$, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:TREND:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-80

Measure Commands
JITTer:TRENd:VERTical:OFFSet

JITTer:TRENd:VERTical:OFFSet

Command :MEASure:JITTer:TRENd:VERTical:OFFSet <offset>

The :MEASure:JITTer:TRENd:VERTial:OFFSet command sets the jitter trend
vertical offset.

<offset> A real number for the vertical offset for the jitter measurement trend.

Example This example sets the jitter trend vertical offset to 100 ps.
10 OUTPUT 707;":MEASURE:JITTER:TREND:VERTICAL:OFFSET 100E-12"
20 END

Query :MEASure:JITTer:TRENd:VERTical:OFFSet?

The :MEASure:JITTer:TRENd:VERTIcal:OFFSet? query returns the jitter trend
vertical offset setting.

Returned format [:MEASure:JITTer:TRENd:VERTical:OFFSet] <value><NL>

<value> The jitter vertical trend offset setting.

Example This example places the current value of jitter trend vertical offset in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:JITTER:TREND:VERTICAL:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-81

Measure Commands
JITTer:TRENd:VERTical:RANGe

JITTer:TRENd:VERTical:RANGe

Command :MEASure:JITTer:TRENd:VERTical:RANGe <range>

The :MEASure:JITTer:TRENd:VERTial:RANGe command sets the jitter trend
vertical range.

<range> A real number for the full-scale vertical range for the jitter measurement trend.

Example This example sets the jitter trend vertical range to 4 ns (500 ps/div X 8 div).
10 OUTPUT 707;":MEASURE:JITTER:TREND:VERTICAL:RANGE 4E-9"
20 END

Query :MEASure:JITTer:TRENd:VERTical:RANGe?

The :MEASure:JITTer:TRENd:VERTIcal:RANGe? query returns the jitter trend
vertical range setting.

Returned Format [:MEASure:JITTer:TRENd:VERTical:RANGe] <value><NL>

<value> The jitter trend vertical range setting.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of jitter trend vertical range in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:JITTER:TREND:VERTICAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-82

Measure Commands
NCJitter

NCJitter

Command :MEASure:NCJitter <source>,<direction>,<n>,<start>

The :MEASure:NCJitter command measures the N cycle jitter of the waveform.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1 - 4.

FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<direction> {RISing | FALLing}, specifies direction of wavcform edge to make measurement.

<n> An integer, 1 to 99, the number of cycles in a group.

<start> An integer, 1 to <n> - 1, typically 1, the cycle to start measuring.

Example This example measures the N cycle jitter on channel 1, rising edge, 5 cycles in
a group, starting on the first cycle of the waveform.
10 OUTPUT 707;":MEASURE:NCJITTER CHANNEL1,RISING,5,1"
20 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-83

Measure Commands
NCJitter

Query :MEASure:NCJitter? <source>,<direction>,<n>,<start>

The :MEASure:NCJitter? query returns the measured N cycle jitter time of the
waveform.

Returned Format [:MEASure:NCJitter] <value>[,<result_state>]<NL>

<value> The N cycle jitter time of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of N cycle jitter in the numeric variable,
Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:NCJITTER? CHANNEL1,RIS,5,1"
30 ENTER 707;Value
40 PRINT Value
50 END

21-84

Measure Commands
NWIDth

NWIDth

Command :MEASure:NWIDth [<source>]

The :MEASure:NWIDth command measures the width of the first negative pulse
on the screen using the mid-threshold levels of the waveform (50% levels with
standard threshold selected). Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:NWIDth command.

The algorithm is:

If the first edge on the screen is rising,

then

nwidth = time at the second rising edge − time at the first falling edge

else

nwidth = time at the first rising edge − time at the first falling edge.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the width of the first negative pulse on the screen.
10 OUTPUT 707;":MEASURE:NWIDTH CHANNEL1"
20 END

21-85

Measure Commands
NWIDth

Query :MEASure:NWIDth? [<source>]

The :MEASure:NWIDth? query returns the measured width of the first negative
pulse of the specified source.

Returned Format [:MEASure:NWIDth] <value>[,<result_state>]<NL>

<value> The width of the first negative pulse on the screen using the mid-threshold levels
of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current width of the first negative pulse on the screen
in the numeric variable, Width, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:NWIDTH? CHANNEL1"
30 ENTER 707;Width
40 PRINT Width
50 END

21-86

Measure Commands
OVERshoot

OVERshoot

Command :MEASure:OVERshoot [<source>]

The :MEASure:OVERshoot command measures the overshoot of the first edge
on the screen. Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:OVERshoot command.

The algorithm is:

If the first edge on the screen is rising,

then

overshoot = (Local Vmax − Vtop) / Vamplitude

else

overshoot = (Vbase − Local Vmin) / Vamplitude.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the overshoot of the first edge on the screen.
10 OUTPUT 707;":MEASURE:OVERSHOOT CHANNEL1"
20 END

21-87

Measure Commands
OVERshoot

Query :MEASure:OVERshoot? [<source>]

The :MEASure:OVERshoot? query returns the measured overshoot of the
specified source.

Returned Format [:MEASure:OVERshoot] <value>[,<result_state>]<NL>

<value> Ratio of overshoot to amplitude, in percent.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of overshoot in the numeric variable,
Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:OVERSHOOT? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

21-88

Measure Commands
PERiod

PERiod

Command :MEASure:PERiod [<source>],<direction>

The :MEASure:PERiod command measures the period of the first complete
cycle on the screen using the mid-threshold levels of the waveform (50% levels
with standard measurements selected). The source is specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:PERiod command.

The algorithm is:

If the first edge on the screen is rising,

then

period = time at the second rising edge − time at the first rising edge

else

period = time at the second falling edge − time at the first falling edge.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

<direction> {RISing | FALLing}

Specifies direction of edge to start measurement.

Example This example measures the period of the waveform.
10 OUTPUT 707;":MEASURE:PERIOD CHANNEL1"
20 END

The <direction> parameter is only available when the E2681A Jitter Analysis
Software is installed. When <direction> is specified, the <source> parameter is
required.

21-89

Measure Commands
PERiod

Query :MEASure:PERiod? [<source>],<direction>

The :MEASure:PERiod? query returns the measured period of the specified
source.

Returned Format [:MEASure:PERiod] <value>[,<result_state>]<NL>

<value> Period of the first complete cycle on the screen.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current period of the waveform in the numeric variable,
Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:PERIOD? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

21-90

Measure Commands
PHASe

PHASe

Command :MEASure:PHASe [<source>[,<source>[,<direction>]]]

The :MEASure:PHASe command measures the phase in degrees between two
edges. If two sources are specified, the phase from the specified edge of the
first source to the specified edge of the second source is measured. If one source
is specified, the phase is always 0.0E0.00°.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1-4.

<direction> {RISing | FALLing}

Specifies direction of edge to measure.

Example This example measures the phase between channel 1 and
channel 2.
10 OUTPUT 707;":MEASURE:PHASE CHANNEL1,CHANNEL2"
20 END

The <direction> parameter is only available when the E2681A Jitter Analysis
Software is installed.

21-91

Measure Commands
PHASe

Query :MEASure:PHASe? [<source>[,<source>[,<direction>]]]

The :MEASure:PHASe? query returns the measured phase angle value.

The necessary waveform edges must be present on the display. The query will
return 9.99999E+37 if the necessary edges are not displayed.

Returned Format [:MEASure:PHASe] <value>[,result_state]<NL>

<value> Phase angle from the first edge on the first source to the first edge edge on the
second source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current phase angle value between channel 1 and
channel 2 in the variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:PHASE? CHANNEL1,CHANNEL2"
30 ENTER 707;Value
40 PRINT Value
50 END

21-92

Measure Commands
PREShoot

PREShoot

Command :MEASure:PREShoot [<source>]

The :MEASure:PREShoot command measures the preshoot of the first edge on
the screen. Sources are specified with the :MEASure:SOURce command or with
the optional parameter following the :MEASure:PREShoot command.

The algorithm is:

If the first edge on the screen is rising,

then

preshoot = (Vbase − Local Vmin) / Vamplitude

else

preshoot = (Local Vmax − Vtop) / Vamplitude.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the preshoot of the waveform on the screen.
10 OUTPUT 707;":MEASURE:PRESHOOT CHANNEL1"
20 END

21-93

Measure Commands
PREShoot

Query :MEASure:PREShoot?[<source>]

The :MEASure:PREShoot? query returns the measured preshoot of the
specified source.

Returned Format [:MEASure:PREShoot] <value>[,<result state>]<NL>

<value> Ratio of preshoot to amplitude, in percent.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of preshoot in the numeric variable,
Preshoot, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:PRESHOOT? CHANNEL1"
30 ENTER 707;Preshoot
40 PRINT Preshoot
50 END

21-94

Measure Commands
PWIDth

PWIDth

Command :MEASure:PWIDth [<source>]

The :MEASure:PWIDth command measures the width of the first positive pulse
on the screen using the mid-threshold levels of the waveform (50% levels
with standard measurements selected). Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:PWIDth command.

The algorithm is:

If the first edge on the screen is rising,

then

pwidth = time at the first falling edge − time at the first rising edge

else

pwidth = time at the second falling edge − time at the first rising edge.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the width of the first positive pulse on the screen.
10 OUTPUT 707;":MEASURE:PWIDTH CHANNEL1"
20 END

21-95

Measure Commands
PWIDth

Query :MEASure:PWIDth?[<source>]

The :MEASure:PWIDth? query returns the measured width of the first positive
pulse of the specified source.

Returned Format [:MEASure:PWIDth] <value>[,<result_state>]<NL>

<value> Width of the first positive pulse on the screen in seconds.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the value of the width of the first positive pulse on the
screen in the numeric variable, Width, then prints the contents of the variable
to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:PWIDTH? CHANNEL1"
30 ENTER 707;Width
40 PRINT Width
50 END

21-96

Measure Commands
RESults?

RESults?

Query :MEASure:RESults?

The :MEASure:RESults? query returns the results of the continuously displayed
measurements. The response to the MEASure:RESults? query is a list of
comma-separated values.

The measurement results always include the current results of the
measurements. If SENDvalid is ON, the results state is returned immediately
following the measurement result.

If more than one measurement is running continuously, the values in the
:MEASure:RESults returned are duplicated for each continuous measurement
from the first to last (left to right) result displayed. Each result returned is
seperated from the previous result by a comma. There is a maximum of five
continuous measurements that can be continuously displayed at a time.

Returned Format [:MEASure:RESults] <result_list><NL>

<result_list> A list of the measurement results separated with commas. The following shows
the order of values received for a single measurement.

Min, max, mean, std dev, and # of meas are only returned if the
:MEASure:STATistics is ON. The result state is only returned if
:MEASure:SENDvalid is ON. See Table 21-2 for the meaning of the result state
codes.

Example This example places the current results of the measurements in the string
variable, Result$, then prints the contents of the variable to the computer's
screen.
10 DIM Result$[500]!Dimension variable
20 OUTPUT 707;":MEASURE:RESULTS?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

Measurement label current result state min max mean std dev # of meas

21-97

Measure Commands
RESults?

Table 21-2 Result States

Code Description

0 Result correct. No problem found.

1 Result questionable but could be measured.

2 Result less than or equal to value returned.

3 Result greater than or equal to value returned.

4 Result returned is invalid.

5 Result invalid. Required edge not found.

6 Result invalid. Max not found.

7 Result invalid. Min not found.

8 Result invalid. Requested time not found.

9 Result invalid. Requested voltage not found.

10 Result invalid. Top and base are equal.

11 Result invalid. Measurement zone too small.

12 Result invalid. Lower threshold not on waveform.

13 Result invalid. Upper threshold not on waveform.

14 Result invalid. Upper and lower thresholds are too close.

15 Result invalid. Top not on waveform.

16 Result invalid. Base not on waveform.

17 Result invalid. Completion criteria not reached.

18 Result invalid. Measurement invalid for this type of
waveform.

19 Result invalid. waveform is not displayed.

20 Result invalid. Waveform is clipped high.

21 Result invalid. Waveform is clipped low.

22 Result invalid. Waveform is clipped high and low.

23 Result invalid. Data contains all holes.

24 Result invalid. No data on screen.

29 Result invalid. FFT peak not found.

30 Result invalid. Eye pattern not found.

31 Result invalid. No NRZ eye pattern found.

33 Result invalid. There is more than one source on creating
the database.

35 Signal may be too small to evaluate.

21-98

Measure Commands
RESults?

36 Result invalid. Awaiting completion of averaging.

39 Result invalid. Need jitter package to make this
measurement or must be in jitter mode to make this
measurement.

40 Current measurement is not on screen.

41 Not enough points available to recover the clock.

42 The loop bandwidth of the PLL is too high to recover the
clock.

43 RJDJ pattern not found in data.

45 Clock recovery mode is not permitted.

46 Too much jitter to make a RJDJ separation.

21-99

Measure Commands
RISetime

RISetime

Command :MEASure:RISetime [<source>]

The :MEASure:RISetime command measures the rise time of the first displayed
edge by measuring the time at the lower threshold of the rising edge, measuring
the time at the upper threshold of the rising edge, then calculating the rise time
with the following algorithm:

Rise time = time at upper threshold point − time at lower threshold point.

To make this measurement requires 4 or more sample points on the rising edge
of the waveform.

Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the RISetime command. With standard thresholds
selected, the lower threshold is at the 10% point and the upper threshold is at
the 90% point on the rising edge.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the rise time of the channel 1 waveform.
10 OUTPUT 707;":MEASURE:RISETIME CHANNEL1"
20 END

21-100

Measure Commands
RISetime

Query :MEASure:RISetime?[<source>]

The :MEASure:RISetime? query returns the rise time of the specified source.

Returned Format [:MEASure:RISetime] <value>[,<result_state>]<NL>

<value> Rise time in seconds.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of rise time in the numeric variable, Rise,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RISETIME? CHANNEL1"
30 ENTER 707;Rise
40 PRINT Rise
50 END

21-101

Measure Commands
SCRatch

SCRatch

Command :MEASure:{SCRatch | CLEar}

The :MEASure:SCRatch command clears the measurement results from the
screen. This command performs the same function as :MEASure:CLEar.

Example This example clears the current measurement results from the screen.
10 OUTPUT 707;":MEASURE:SCRATCH"
20 END

21-102

Measure Commands
SENDvalid

SENDvalid

Command :MEASure:SENDvalid {{OFF|0} | {ON|1}}

The :MEASure:SENDvalid command enables the result state code to be
returned with the :MEASure:RESults? query and all other measurement
queries.

Example This example turns the send valid function on.
10 OUTPUT 707;":MEASURE:SENDVALID ON"
20 END

Query :MEASure:SENDvalid?

The :MEASure:SENDvalid? query returns the state of the send valid control.

Returned Format {:MEASure:SENDvalid] {0 | 1}<NL>

Example This example places the current mode for SENDvalid in the string variable,
Mode$, then prints the contents of the variable to the computer's screen.
10 DIM Mode$[50]!Dimension variable
20 OUTPUT 707;":MEASURE:SENDVALID?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

See Also Refer to the :MEASure:RESults? query for information on the results returned
and how they are affected by the SENDvalid command. Refer to the individual
measurements for information on how the result state is returned.

21-103

Measure Commands
SETuptime

SETuptime

Command :MEASure:SETuptime
[<data_source>,<data_source_dir>,<clock_source>,
<clock_ source_dir>]

The :MEASure:SETuptime command measures the setup time between the
specified clock and data source.

<data_source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<clock_source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

<data_source
_dir>

{RISing | FALLing | BOTH}

Selects the direction of the data source edge. BOTH selects both edges to be
measured.

<clock_source
_dir>

{RISing | FALLing}

Selects the direction of the clock source edge.

Example This example measures the setup time from the rising edge of channel 1 to the
rising edge of channel 2.
10 OUTPUT 707;":MEASURE:SETUPTIME CHAN1,RIS,CHAN2,RIS"
20 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-104

Measure Commands
SETuptime

Query :MEASure:SETuptime?
[<data_source>,<data_source_dir>,<clock_source>,
<clock_ source_dir>]

The :MEASure:SETuptime query returns the measured setup time between the
specified clock and data source.

Returned Format {:MEASure:SETuptime] <value><NL>

<value> Setup time in seconds.

Example This example places the current value of setup time in the numeric
variable,Time, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:SETUPTIME? CHAN1,RIS,CHAN2,RIS"
30 ENTER 707;Time
40 PRINT Time
50 END

21-105

Measure Commands
SLEWrate

SLEWrate

Command :MEASure:SLEWrate [<data_source>]

The :MEASure:SLEWrate command measures the slew rate of the specified data
source.

<data_source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the slew rate of channel 1.
10 OUTPUT 707;":MEASURE:SLEWRATE CHAN1"
20 END

Query :MEASure:SLEWrate? [<data_source>]

The :MEASure:SLEWrate? query returns the measured slew rate for the
specified source.

Returned Format {:MEASure:SLEWrate] <value><NL>

<value> Slew rate in volts per second.

Example This example places the channel 1 value of slew rate in the numeric
variable,Time, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:SLEWRATE? CHAN1"
30 ENTER 707;Time
40 PRINT Time
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-106

Measure Commands
SOURce

SOURce

Command :MEASure:SOURce {<source>[,<source>]}

The :MEASure:SOURce command selects the source for measurements. You
can specify one or two sources with this command. All measurements except
:MEASure:SETUPtime, MEASure:HOLDtime, and :MEASure:DELTatime are
made on the first specified source. The delta time measurement uses two
sources if two are specified.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example selects channel 1 as the source for measurements.
10 OUTPUT 707;":MEASURE:SOURCE CHANNEL1"
20 END

Query :MEASure:SOURce?

The :MEASure:SOURce? query returns the current source selection.

Returned Format [:MEASure:SOURce] <source>[,<source>]<NL>

Example This example places the currently specified sources in the string variable,
Source$, then prints the contents of the variable to the computer's screen.
10 DIM Source$[50]!Dimension variable
20 OUTPUT 707;":MEASURE:SOURCE?"
30 ENTER 707;Source$
40 PRINT Source$
50 END

21-107

Measure Commands
STATistics

STATistics

Command :MEASure:STATistics {{OFF|0} | {ON|1}}

The :MEASure:STATistics command turns the statistics measurements on and
off. The statistics state only affects the information returned by the
:MEASure:RESults? query.

Example This example turns the statistics function on.
10 OUTPUT 707;":MEASURE:STATISTICS ON"
20 END

Query :MEASure:STATistics?

The :MEASure:STATistics? query returns the current statistics mode.

Returned Format [:MEASure:STATistics] {0 | 1}<NL>

Example This example places the current mode for statistics in the string variable,
Mode$, then prints the contents of the variable to the computer's screen.
10 DIM Mode$[50]!Dimension variable
20 OUTPUT 707;":MEASURE:STATISTICS?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

See Also Refer to the :MEASure:RESults? query for information on the result returned
and how it is affected by the STATistics command.

21-108

Measure Commands
TEDGe

TEDGe

Command :MEASure:TEDGe <meas_thres_txt>,
[<slope>]<occurrence>[,<source>]

The :MEASure:TEDGe command measures the time interval between the
trigger event and the specified edge (threshold level, slope, and transition).
Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:TEDGe command.

<meas_thres
_txt>

UPPer, MIDDle, or LOWer to identify the threshold.

<slope> { - (minus) for falling | + (plus) for rising | <none> (the slope is optional; if
no slope is specified, + (plus) is assumed) }

<occurrence> An integer value representing the edge of the occurrence. The desired edge
must be present on the display. Edges are counted with 1 being the first edge
from the left on the display, and a maximum value of 65534.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

21-109

Measure Commands
TEDGe

Query :MEASure:TEDGe? <meas_thres_txt>,
<slope><occurrence> [,<source>]

The :MEASure:TEDGe? query returns the time interval between the trigger
event and the specified edge (threshold level, slope, and transition).

Returned Format [:MEASure:TEDGe] <time>[,<result_state>]<NL>

<time> The time interval between the trigger event and the specified voltage level and
transition.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the time interval between the trigger event and the 90%
threshold on the second rising edge of the source waveform to the numeric
variable, Time. The contents of the variable are then printed to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TEDGE? UPPER,+2,CHANNEL1"
30 ENTER 707;Time
40 PRINT Time
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

21-110

Measure Commands
TIEClock2

TIEClock2

Command :MEASure:TIEClock2 <source>,{SECond |
UNITinterval},<direction>, {AUTO |
CUSTOM,<frequency> |
VARiable,<frequency>,<bandwidth> | CLOCk}

The :MEASure:TIEClock2 command measures time interval error on a clock.
You can set the units of the measurement by selecting SECond (seconds) or
UNITinterval. If AUTO is selected, the oscilloscope selects the ideal constant
clock frequency. If CUSTom is selected, you can enter your own ideal clock
frequency. If VARiable is selected, a first order PLL clock recovery is used at
the give clock frequency and loop bandwidth. If CLOCk is given, clock recovery
is specified with the :MEASure:CLOCk:METHod command is used.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

<direction> {RISing | FALLing | BOTH}

Specifies direction of clock edge. BOTH selects the first edge from the left-hand
side of the waveform viewing area.

<frequency> A real number for the ideal clock frequency for the clock time interval error.

<bandwidth> A real number for the loop bandwidth of the PLL clock recovery method.

Example This example measures the clock time interval error on the rising edge of
channel 1, ideal clock frequency set to automatic, units set to seconds.
10 OUTPUT 707;":MEASURE:TIECLOCK2 CHANNEL1,SECOND,RISING,AUTO"
20 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-111

Measure Commands
TIEClock2

Query :MEASure:TIEClock2? <source>,{SECond |
UNITinterval},<direction>,{AUTO |
CUSTOM,<frequency> |
VARiable,<frequency>,<bandwidth> | CLOCk}

The :MEASure:TIEClock2? query returns the current value of the clock time
interval error.

Returned format [:MEASure:TIEClock2] <value>[,<result_state>]<NL>

<value> The clock time interval error value.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of the clock time interval error in the
variable Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:TIECLOCK2?
CHANNEL1,SECOND,FALLING,CUSTOM,2.5E9"
30 ENTER 707;Value$
40 PRINT Value$
50 END

21-112

Measure Commands
TIEData

TIEData

Command :MEASure:TIEData <source>,(SECond | UNITinterval},
{AUTO | CUSTOM,<data_rate> |
VARiable,<data_rate>,<bandwidth> | CLOCk}

The :MEASure:TIEData command measures data time interval error. You can
set the units of the measurement by selecting SECond (seconds) or
UNITinterval. If AUTO is selected, the oscilloscope selects the ideal data rate.
If CUSTom is selected, you can enter your own ideal constant data rate. If
VARiable is selected, a first order PLL clock recovery is used at a given data rate
and loop bandwidth. If CLOCk is given, clock recovery as specified with the
:MEASure:CLOCk:METHod is used.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4s.

<data_rate> A real number for the ideal data rate for clock recovery.

<bandwidth> A real number for the loop bandwidth of the PLL clock recovery method.

Example This example measures the data time interval error on channel 1, ideal data rate
set to automatic, units set to seconds.
10 OUTPUT 707;":MEASURE:TIEDATA CHANNEL1,SECOND,AUTO"
20 END

This command is only available when the E2681A Jitter Analysis Software or Serial
Data Analysis are installed.

21-113

Measure Commands
TIEData

Query :MEASure:TIEData? <source>,(SECond | UNITinterval},
{AUTO | CUSTom,<frequency> |
VARiable,<frequency>,<bandwidth> | CLOCk}

The :MEASure:TIEData? query returns the current value of the data time
interval error.

Returned format [:MEASure:TIEData] <value>[,<result_state>]<NL>

<value> The data time interval error value.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of the data time interval error in the
variable Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:TIEDATA? CHANNEL1,SECOND,CUSTOM,1E9"
30 ENTER 707;Value$
40 PRINT Value$
50 END

21-114

Measure Commands
TMAX

TMAX

Command :MEASure:TMAX [<source>]

The :MEASure:TMAX command measures the first time at which the maximum
voltage of the source waveform occurred. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:TMAX command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Query :MEASure:TMAX? [<source>]

The :MEASure:TMAX? query returns the time at which the first maximum
voltage occurred.

Returned Format [:MEASure:TMAX] <time>[,<result_state>]<NL>

<time> Time at which the first maximum voltage occurred or frequency where the
maximum FFT amplitude occurred.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the time at which the first maximum voltage occurred to
the numeric variable, Time, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TMAX? CHANNEL1"
30 ENTER 707;Time
40 PRINT Time
50 END

21-115

Measure Commands
TMIN

TMIN

Command :MEASure:TMIN [<source>]

The :MEASure:TMIN command measures the time at which the first minimum
voltage occurred. Sources are specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:TMIN command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Query :MEASure:TMIN? [<source>]

The :MEASure:TMIN? query returns the time at which the first minimum
voltage occurred or the frequency where the minimum FFT amplitude occurred.

Returned Format [:MEASure:TMIN] <time>[,<result_state>]<NL>

<time> Time at which the first minimum voltage occurred.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the time at which the first minimum voltage occurred to
the numeric variable, Time, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TMIN? CHANNEL1"
30 ENTER 707;Time
40 PRINT Time
50 END

21-116

Measure Commands
TVOLt

TVOLt

Command :MEASure:TVOLt <voltage>,[<slope>]<occurrence>
[,<source>]

The :MEASure:TVOLt command measures the time interval between the trigger
event and the defined voltage level and transition. Sources are specified with
the :MEASure:SOURce command or with the optional parameter following the
:MEASure:TVOLt command.

The TEDGe command can be used to get time of edges.

Query :MEASure:TVOLt? <voltage>,<slope><occurrence>
[,<source>]

The :MEASure:TVOLt? query returns the time interval between the trigger
event and the specified voltage level and transition.

<voltage> Voltage level at which time will be measured.

<slope> The direction of the waveform change when the specified voltage is crossed -
rising (+) or falling (−). If no +/- sign is present, + is assumed.

<occurrence> The number of the crossing to be reported (if one, the first crossing is reported;
if two, the second crossing is reported, etc.). The desired crossing must be
present on the display. Occurences are counted with 1 being the first occurance
from the left of the display, and a maximum value of 65534.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Returned Format [:MEASure:TVOLt] <time>[,<result_state>]<NL>

<time> The time interval between the trigger event and the specified voltage level and
transition.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

21-117

Measure Commands
TVOLt

Example This example returns the time interval between the trigger event and the
transition through −.250 Volts on the third rising occurance of the source
waveform to the numeric variable, Time. The contents of the variable are then
printed to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TVOLT? -.250,+3,CHANNEL1"
30 ENTER 707;Time
40 PRINT Time
50 END

21-118

Measure Commands
UNITinterval

UNITinterval

Command :MEASure:UNITinterval [<source>]

The :MEASure:UNITinterval command measures the unit interval value of the
selected source. Use the :MEASure:DATarate command/query to measure the
data rate of the source

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the unit interval of channel 1.
10 OUTPUT 707;"MEASURE:UNITINTERVAL CHANNEL1"
20 END

Query :MEASure:UNITinterval? [<source>]

The :MEASure:UNITinterval? query returns the measured unit interval.

Returned Format [:MEASure:UNITinterval] <value>[,<result_state>]<NL>

<value> Unit interval of the source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current unit interval of the channel 1 waveform in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:UNITINTERVAL? CHANNEL1”
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software is installed.

21-119

Measure Commands
VAMPlitude

VAMPlitude

Command :MEASure:VAMPlitude [<source>]

The :MEASure:VAMPlitude command calculates the difference between the top
and base voltage of the specified source. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:VAMPlitude command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example calculates the difference between the top and base voltage of the
specified source.
10 OUTPUT 707;":MEASURE:VAMPLITUDE CHANNEL1"
20 END

Query :MEASure:VAMPlitude? [<source>]

The :MEASure:VAMPlitude? query returns the calculated difference between
the top and base voltage of the specified source.

Returned Format [:MEASure:VAMPlitude] <value>[,<result_state>]<NL>

<value> Calculated difference between the top and base voltage.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current Vamplitude value in the numeric variable,
Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VAMPLITUDE? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

21-120

Measure Commands
VAVerage

VAVerage

Command :MEASure:VAVerage {CYCLe | DISPlay}[,<source>]

The :MEASure:VAVerage command calculates the average voltage over the
displayed waveform. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VAVerage
command.

CYCLe The CYCLe parameter instructs the average measurement to measure the
average voltage across the first period on the display.

DISPlay The DISPlay parameter instructs the average measurement to measure all the
data on the display.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example calculates the average voltage over the displayed waveform.
10 OUTPUT 707;":MEASURE:VAVERAGE DISPLAY,CHANNEL1"
20 END

21-121

Measure Commands
VAVerage

Query :MEASure:VAVerage? {CYCLe | DISPlay}[,<source>]

The :MEASure:VAVerage? query returns the calculated average voltage of the
specified source. Sources are specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:VAVerage command.

Returned Format [:MEASure:VAVerage] <value>[,<result_state>]<NL>

<value> The calculated average voltage.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current average voltage in the numeric variable,
Average, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VAVERAGE? DISPLAY,CHANNEL1 CHANNEL1"
30 ENTER 707;Average
40 PRINT Average
50 END

21-122

Measure Commands
VBASe

VBASe

Command :MEASure:VBASe [<source>]

The :MEASure:VBASe command measures the statistical base of the waveform.
Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:VBASe command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the voltage at the base of the waveform.
10 OUTPUT 707;":MEASURE:VBASE CHANNEL1"
20 END

Query :MEASure:VBASe? [<source>]

The :MEASure:VBASe? query returns the measured voltage value at the base
of the specified source.

Returned Format [:MEASure:VBASe] <value>[,<result_state>]<NL>

<value> Voltage at the base of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the current voltage at the base of the waveform to the
numeric variable, Voltage, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VBASE? CHANNEL1"
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

21-123

Measure Commands
VLOWer

VLOWer

Command :MEASure:VLOWer [<source>]

The :MEASure:VLOWer command measures the voltage value at the lower
threshold of the waveform. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VLOWer
command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Query :MEASure:VLOWer?

The :MEASure:VLOWer? query returns the measured lower threshold of the
selected source.

Returned Format [:MEASure:VLOWer] <value>[,<result_state>]<NL>

<value> Voltage value at the lower threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured voltage at the lower threshold of the
waveform to the numeric variable, Vlower, then prints the contents of the
variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VLOW? CHANNEL1"
30 ENTER 707;Vlower
40 PRINT Vlower
50 END

21-124

Measure Commands
VMAX

VMAX

Command :MEASure:VMAX [<source>]

The :MEASure:VMAX command measures the absolute maximum voltage
present on the selected source waveform. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:VMAX command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the absolute maximum voltage on the waveform.
10 OUTPUT 707;":MEASURE:VMAX CHANNEL1"
20 END

Query :MEASure:VMAX? [<source>]

The :MEASure:VMAX? query returns the measured absolute maximum voltage
or maximum FFT amplitude present on the selected source waveform.

Returned Format [:MEASure:VMAX] <value>[,<result_state>]<NL>

<value> Absolute maximum voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured absolute maximum voltage on the waveform
to the numeric variable, Maximum, then prints the contents of the variable to
the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VMAX? CHANNEL1"
30 ENTER 707;Maximum
40 PRINT Maximum
50 END

21-125

Measure Commands
VMIDdle

VMIDdle

Command :MEASure:VMIDdle [<source>]

The :MEASure:VMIDdle command measures the voltage level at the middle
threshold of the waveform. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VMIDdle
command.

Query :MEASure:VMIDdle? [<source>]

The :MEASure:VMIDdle? query returns the voltage value at the middle
threshold of the waveform.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Returned Format [MEASure:VMIDdle] <value>[,<result_state>]<NL>

<value> The middle voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured middle voltage on the waveform to the
numeric variable, Middle, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VMID? CHANNEL1"
30 ENTER 707;Middle
40 PRINT Middle
50 END

21-126

Measure Commands
VMIN

VMIN

Command :MEASure:VMIN [<source>]

The :MEASure:VMIN command measures the absolute minimum voltage
present on the selected source waveform. Sources are specified with
:MEASure:SOURce or with the optional parameter following the
:MEASure:VMIN command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the absolute minimum voltage on the waveform.
10 OUTPUT 707;":MEASURE:VMIN CHANNEL1"
20 END

Query :MEASure:VMIN? [<source>]

The :MEASure:VMIN? query returns the measured absolute minimum voltage
or minimum FFT amplitude present on the selected source waveform.

Returned Format [:MEASure:VMIN] <value>[,<result_state>]<NL>

<value> Absolute minimum voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured absolute minimum voltage on the waveform
to the numeric variable, Minimum, then prints the contents of the variable to
the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VMIN? CHANNEL1"
30 ENTER 707;Minimum
40 PRINT Minimum
50 END

21-127

Measure Commands
VPP

VPP

Command :MEASure:VPP [<source>]

The :MEASure:VPP command measures the maximum and minimum voltages
on the selected source, then calculates the peak-to-peak voltage as the
difference between the two voltages. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:VPP command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the peak-to-peak voltage or FFT amplitude range of the
previously selected source.
10 OUTPUT 707;":MEASURE:VPP CHANNEL1"
20 END

Query :MEASure:VPP? [<source>]

The :MEASure:VPP? query returns the specified source peak-to-peak voltage.

Returned Format [:MEASure:VPP] <value>[,<result_state>]<NL>

<value> Peak-to-peak voltage of the selected source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current peak-to-peak voltage in the numeric variable,
Voltage, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VPP? CHANNEL1"
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

21-128

Measure Commands
VRMS

VRMS

Command :MEASure:VRMS {CYCLe | DISPlay},{AC | DC} [,<source>]

The :MEASure:VRMS command measures the RMS voltage of the selected
waveform by subtracting the average value of the waveform from each data
point on the display. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VRMS
command.

CYCLe The CYCLe parameter instructs the RMS measurement to measure the RMS
voltage across the first period of the display.

DISPlay The DISPLay parameter instructs the RMS measurement to measure all the data
on the display. Generally, RMS voltage is measured across one waveform or
cycle, however, measuring multiple cycles may be accomplished with the
DISPLay option. The DISPlay parameter is also useful when measuring noise.

AC The AC parameter is used to measure the RMS voltage subtracting the DC
component.

DC The DC parameter is used to measure RMS voltage including the DC component.

The AC RMS, DC RMS, and VAVG parameters are related as in this formula:

DCVRMS2=ACVRMS2+VAVG2

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the RMS voltage of the previously selected waveform.
10 OUTPUT 707;":MEASURE:VRMS CYCLE,AC,CHANNEL1"
20 END

21-129

Measure Commands
VRMS

Query :MEASure:VRMS? {CYCLe | DISPlay},{AC | DC}
[,<source>]

The :MEASure:VRMS? query returns the RMS voltage of the specified source.

Returned Format [:MEASure:VRMS] <value>[,<result_state>]<NL>

<value> RMS voltage of the selected waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current AC RMS voltage over one period of the
waveform in the numeric variable, Voltage, then prints the contents of the
variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VRMS? CYCLE,AC,CHANNEL1"
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

21-130

Measure Commands
VTIMe

VTIMe

Command :MEASure:VTIMe <time>[,<source>]

The :MEASure:VTIMe command measures the voltage at the specified time.
The time is referenced to the trigger event and must be on the screen. When
an FFT function is the specified source, the amplitude at the specified frequency
is measured. Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:VTIMe command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

<time> A real number for time from trigger in seconds, or frequency in Hertz for an
FFT (when a function is set to FFT or a waveform memory contains an FFT).

Query :MEASure:VTIMe? <time>[,<source>]

The :MEASure:VTIMe? query returns the measured voltage or amplitude.

Returned Format [:MEASure:VTIMe] <value>[,<result_state>]<NL>

<value> Voltage at the specified time. When the source is an FFT function, the returned
value is the vertical value at the horizontal setting passed in the VTIMe <time>
parameter. The time parameter is in Hertz when an FFT function is the source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the voltage at 500 ms in the numeric variable, Value, then
prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VTIME? 500E−3,CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

21-131

Measure Commands
VTOP

VTOP

Command :MEASure:VTOP [<source>]

The :MEASure:VTOP command measures the statistical top of the selected
source waveform. Sources are specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:VTOP command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the voltage at the top of the waveform.
10 OUTPUT 707;":MEASURE:VTOP CHANNEL1"
20 END

Query :MEASure:VTOP? [<source>]

The :MEASure:VTOP? query returns the measured voltage at the top of the
specified source.

Returned Format [:MEASure:VTOP] <value>[,<result_state>]<NL>

<value> Voltage at the top of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the value of the voltage at the top of the waveform in the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VTOP? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

21-132

Measure Commands
VUPPer

VUPPer

Command :MEASure:VUPPer [<source>]

The :MEASure:VUPPer command measures the voltage value at the upper
threshold of the waveform. Sources are specified with the MEASure:SOURce
command or with the optional parameter following the :MEASure:VUPPer
command.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> is an integer, 1 - 4.

Example This example measures the voltage at the upper threshold of the waveform.
10 OUTPUT 707;":MEASURE:VUPPer CHANNEL1"
20 END

Query :MEASure:VUPPer? [<source>]

The :MEASure:VUPPer? query returns the measured upper threshold value of
the selected source.

Returned Format [:MEASure:VUPPer] <value>[,<result_state>]<NL>

<value> Voltage at the upper threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
See the :MEASure:RESults table in this chapter for a list of the result states.

Example This example places the value of the voltage at the upper threshold of the
waveform in the numeric variable, Value, then prints the contents of the variable
to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VUPPER? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

22

Pod Commands

22-2

Pod Commands

The :POD modes and commands described in this chapter include:

• DISPlay

• THReshold

• PSKew

The POD commands only apply to the MSO Oscilloscopes.

22-3

Pod Commands
DISPlay

DISPlay

Command :POD<N>[:DISPlay] {ON | OFF | 1 | 0}

The :POD<N>:DISPlay command enables or disables the view of selected pod.
Pod 1 is bits D7 through D0 and pod 2 is bits D15 through D8. The digital
subsystem must be enabled before this command will work. See ENABle
command in the root subsystem.

<N> An integer, 1 - 2.

Example This example turns on the view of pod 2.
10 Output 707;:ENABLE DIGITAL”
20 Output 707;”:POD2 ON”
30 END

Query :POD<N>:DISPlay?

The :POD<N>:DISPlay? query returns the current digital display setting for the
selected pod.

Returned Format [:POD<N>:DISPlay] {1 | 0}<NL>

The POD commands only apply to the MSO Oscilloscopes.

22-4

Pod Commands
THReshold

THReshold

Command :POD<N>:THReshold {CMOS50 | CMOS30 | CMOS25 | ECL |
PECL | TTL | <value>}

The :POD<N>:THReshold command sets the logic threshold value for the
selected pod. POD1 is digital channels D0 through D7 and POD2 is digital
channels D8 through D15. The threshold is used for triggering purposes and
for displaying the digital data as high (above the threshold) or low (below the
threshold). The voltage values for the predefined thresholds are:

CMOS50=2.5 V

CMOS30=1.65 V

CMOS25=1.25 V

ECL=-1.3 V

PECL=3.7 V

TTL=1.4 V

<N> An integer, 1 - 2.

<value> A real number representing the voltage value which distinguishes a 1 logic level
from a 0 logic level. Waveform voltages greater than the threshold are 1 logic
levels while waveform vlotages less than the threshold are 0 logic levels. The
range of the threshold voltage is from -8 volts to 8 volts.

Query :POD<N>:THREShold?

The :POD<N>:THReshold? query returns the threshold value for the specified
pod.

Return format [:POD<N>:THReshold] {CMOS50 | CMOS30 | CMOS25 | ECL | PECL |
TTL | <value>}<NL>

The POD commands only apply to the MSO Oscilloscopes.

22-5

Pod Commands
PSKew

PSKew

Command :POD<N>:PSKew <value>

The :POD<N>:PSKew command sets the probe skew between the analog
channels and the digital channels. This allows you to adjust for time delay
differences due to cables or probe length differences between the analog and
digital channels.

<value> A real number representing the probe skew between the analog and digital
channels. The range of probe skew is from -100 µs to 100 µs.

Example This example sets the probe skew to 1 ps.
10 Output 707;”:POD1:PSKew 1E-12”
20 END

Query :POD<N>:PSKew?

The :POD<N>:PSKew? query returns the probe skew value.

Return format [:POD<N>:PSKew] <value><NL>

The POD commands only apply to the MSO Oscilloscopes.

22-6

23

Root Level Commands

23-2

Root Level Commands

Root level commands control many of the basic operations of the
oscilloscope that you can select by pressing the labeled keys on the front
panel. These commands are always recognized by the parser if they are
prefixed with a colon, regardless of the current tree position. After
executing a root level command, the parser is positioned at the root of
the command tree.

These root level commands and queries are implemented in the Infiniium
Oscilloscopes:

• ADER? (Acquisition Done Event Register)
• AER? (Arm Event Register)
• ATER? (Auto Trigger Event Register)
• AUToscale
• BLANk
• CDISplay
• DIGitize
• DISable
• ENABle
• MTEE (Mask Test Enable Register)
• MTER? (Mask Test Event Register)
• MODel?
• OPEE (Operation Status Enable)
• OPER? (Operation Status Register)
• OVLEnable
• OVLRegister
• PRINt
• RECall:SETup
• RUN
• SERial (Serial Number)
• SINGle
• STATus?
• STOP

23-3

• STORe:SETup
• STORe:WAVeform
• TER? (Trigger Event Register)
• VIEW

23-4

Root Level Commands
ADER? (Acquisition Done Event Register)

ADER? (Acquisition Done Event Register)

Query :ADER?

The :ADER? query reads the Aquisistion Done Event Register and returns 1 or
0. After the Acquisition Done Event Register is read, the register is cleared.
The returned value 1 indicates an acquisition completed event has occurred
and 0 indicates an acquisition completed event has not occurred.

Once the Done bit is set, it is cleared only by doing :ADER? or by sending a *CLS
command.

Returned Format {1 | 0}<NL>

23-5

Root Level Commands
AER? (Arm Event Register)

AER? (Arm Event Register)

Query :AER?

The :AER? query reads the Arm Event Register and returns 1 or 0. After the
Arm Event Register is read, the register is cleared. The returned value 1
indicates a trigger armed event has occurred and 0 indicates a trigger armed
has not occurred.

Once the AER bit is set, it is cleared only by doing :AER? or by sending a *CLS
command.

Returned Format {1 | 0}<NL>

Arm Event Returns

:AER? will allow the Arm Event to return either immediately (if you have armed but
not triggered) or on the next arm (if you have already triggered). However, *CLS is
always required to get an SRQ again.

23-6

Root Level Commands
ATER? (Auto Trigger Event Register)

ATER? (Auto Trigger Event Register)

Query :ATER?

The :ATER? query reads the Auto Trigger Event Register and returns 1 or 0.
After the Auto Trigger Event Register is read, the register is cleared. The
returned value 1 indicates an auto trigger event has occurred and 0 indicates
an auto trigger event has not occurred.

Returned Format {1 | 0}<NL>

23-7

Root Level Commands
AUToscale

AUToscale

Command :AUToscale

The :AUToscale command causes the oscilloscope to evaluate all input
waveforms and find the optimum conditions for displaying the waveform. It
searches each of the channels for input waveforms and shuts off channels where
no waveform is found. It adjusts the vertical gain and offset for each channel
that has a waveform, and sets the time base on the lowest numbered input
channel that has a waveform.

The trigger is found by first searching external trigger inputs, then searching
each channel, starting with channel 4, then channel 3, channel 2, and channel 1,
until a trigger waveform is detected. If waveforms cannot be found on any
vertical input, the oscilloscope is returned to its former state.

Autoscale sets the following:

• Channel Display, Scale, and Offset

• Trigger Sweep, Mode, Edge, Source, Level, Slope, Hysteresis, and Holdoff

• Acquisition Sampling Rate and Memory Depth

• Time Base Scale and Position

• Marker Mode Set to Measurement

• Resets Acquisition Completion Criteria to 90%

Autoscale turns off the following:

• Measurements on sources that are turned off

• Functions

• Windows

• Memories

No other controls are affected by Autoscale.

Example This example automatically scales the oscilloscope for the input waveform.
10 OUTPUT 707;":AUTOSCALE"
20 END

23-8

Root Level Commands
BLANk

BLANk

Command :BLANk {BUS1 | BUS2 | CHANnel<N> | FUNCtion<N> |
HISTogram | WMEMory<N> | <channel_list> |
<digital_channel> | POD1 | POD2}

The :BLANk command turns off an active channel, function, histogram,
waveform memory, or digital channel. The :VIEW command turns them on.

<N> An integer, 1 - 4.

<channel_list> The channel range is from 0 to 15 in the following format.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGtal15

POD1 Bits 0 through 7 are turned off.

POD2 Bits 8 through 15 are turned off.

Example This example turns off digital channels 1 through 5 and digital channel 8.
10 OUTPUT 707;":BLANK (@1:5,8)"
20 END

(@1,5,7,9) channels 1, 5, 7, and 9 are turned off.

(@1:15) channels 1 through 15 are turned off.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14 are turned off.

23-9

Root Level Commands
CDISplay

CDISplay

Command :CDISplay

The :CDISplay command clears the display and resets all associated
measurements. If the oscilloscope is stopped, all currently displayed data is
erased. If the oscilloscope is running, all of the data in active channels and
functions is erased; however, new data is displayed on the next acquisition.
Waveform memories are not erased.

Example This example clears the oscilloscope display.
10 OUTPUT 707;":CDISPLAY"
20 END

23-10

Root Level Commands
DIGitize

DIGitize

Command :DIGitize [CHANnel<N> | FUNCtion<N> |
<digital_channel> | POD1 | POD2][,...]

<N> An integer, 1 - 4.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGtal15

POD1 Bits 0 through 7 are digitized.

POD2 Bits 8 through 15 are digitized.

The :DIGitize command invokes a special mode of data acquisition that is more
efficient than using the :RUN command. This command initializes the selected
channels or functions, then acquires them according to the current oscilloscope
settings. When all waveforms are completely acquired, the oscilloscope is
stopped. The waveform completion criteria is set with the
“:ACQuire:COMPlete” command.

If you specify channel or function parameters, then these are the only
waveforms acquired and the display waveforms of the specified channels and
functions are turned off.

When you select as a source any of the digital channels or pods all of the digital
channels are digitized.

If you use the :DIGitize command with no parameters, the digitize operation is
performed on the channels or functions that are being displayed in the Infiniium
waveform viewing area. In this case, the display state of the acquired waveforms
is not changed after the the :DIGitize command is completed. Because the
command executes more quickly without parameters, this form of the command
is useful for repetitive measurement sequences. You can also use this mode if
you want to view the digitize results because the display state of the digitized
waveforms is not affected.

Full Range of Measurement and Math Operators are Available

Even though digitized waveforms are not displayed, you may perform the full range
of measurement and math operators on them.

23-11

Root Level Commands
DIGitize

See the Sample Programs in chapter 6 for examples of how to use :DIGitize and
its related commands.

Example This example acquires data on channel 1 and function 2.
10 OUTPUT 707;":DIGITIZE CHANNEL1,FUNCTION2"
20 END

The ACQuire subsystem commands set up conditions such as COUNt for the
next :DIGitize command. The WAVeform subsystem commands determine how
the data is transferred out of the oscilloscope, and how to interpret the data.

23-12

Root Level Commands
DISable

DISable

Command :DISable DIGital

The :DISable DIGital command disables the display of the digital channels. This
command disables the use of the DIGital subsystem commands.

Example This example disables the digital subsystem.
10 OUTPUT 707;":DISABLE DIGITAL"
20 END

23-13

Root Level Commands
ENABle

ENABle

Command :ENABle DIGital

The :ENABle DIGital command enables the display of the digital channels. This
command must be used before the DIGital subsystem commands can be used.

Example This example enables the digital subsystem.
10 OUTPUT 707;":ENABLE DIGITAL"
20 END

23-14

Root Level Commands
MTEE

MTEE

Command :MTEE <enable_mask>

The :MTEE command is used to set bits in the Mask Test Enable Register. This
register enables the following bits of the Mask Test Event Register:

<enable_mask> Bit 0 - Mask Test Complete

Bit 1 - Mask Test Fail

Bit 2 - Mask Low Amplitude

Bit 3 - Mask High Amplitude

Bit 4 - Mask Align Complete

Bit 5 - Mask Align Fail

Bit 6-7 are not used and are set to zero (0).

Query :MTEE?

The :MTEE? query returns the value stored in the Mask Test Enable Register.

Returned Format [:MTEE] <enable_mask>

Example Suppose your application requires an interrupt whenever a Mask Test Fail
occurs in the mask test register. You can enable this bit to generate the summary
bit by sending:
OUTPUT 707;”MTEE 2”

Whenever an error occurs, the oscilloscope sets the MASK bit in the Operation
Status Register. Because the bits in the Operation Status Enable Register are
all enabled, a summary bit is generated to set bit 7 (OPER) in the Status Byte
Register.

If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

23-15

Root Level Commands
MTER?

MTER?

Query :MTER?

The :MTER? query returns the value stored in the Mask Test Event Register.
The bits stored in the register have the following meanings:

The Mask Test Event Register is read and cleared by the MTER? query. The
register output is enabled or disabled using the mask value supplied with the
MTEE command.

Returned Format 0-63 decimal value.

Bit 0 Mask Test Complete bit is set whenever the mask test is complete.

Bit 1 Mask Test Fail bit is set whenever the mask test failed.

Bit 2 Mask Low Amplitude bit is set whenever the signal is below the mask
amplitude.

Bit 3 Mask High Amplitude bit is set whenever the signal is above the mask
amplitude.

Bit 4 Mask Align Complete bit is set whenever the mask align is complete.

Bit 5 Mask Align Fail bit is set whenever the mask align failed.

Disabled Mask Test Event Register Bits Respond, but Do Not Generate a Summary
Bit

Mask Test Event Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).
However, because they are not enabled, they do not generate a summary bit in the
Operation Status Register.

23-16

Root Level Commands
MODel?

MODel?

Query :MODel?

The :MODel? query returns the model number for the oscilloscope.

Returned Format A six-character alphanumeric model number in quotation marks. Output is
determined by header and longform status as in Table 23-1.

<Model #> The model number of the oscilloscope.

Table 23-1 MODel? Returned Format

Example This example places the model number in a string variable, Model$, then prints
the contents of the variable on the computer's screen.

10 Dim Model$[13]!Dimension variable
20 OUTPUT 707;":MODEL?"
30 ENTER 707; Model$
40 PRINT MODEL$
50 END

HEADER LONGFORM RESPONSE

ON OFF ON OFF

X X <Model #>

X X <Model #>

X X :MOD <Model#>

X X :MODEL <Model #>

Where “x” in the Response 5483xB = 1, 2, or 3

23-17

Root Level Commands
OPEE

OPEE

Command :OPEE <mask>

<mask> The decimal weight of the enabled bits.

The :OPEE command sets a mask in the Operation Status Enable register. Each
bit that is set to a “1” enables that bit to set bit 7 in the status byte register, and
potentially causes an SRQ to be generated. Bit 5, Wait for Trig is used. Other
bits are reserved.

Query :OPEE?

The query returns the current value contained in the Operation Status Enable
register as a decimal number.

Returned Format [OPEE] <value><NL>

23-18

Root Level Commands
OPER?

OPER?

Query :OPER?

The :OPER? query returns the value contained in the Operation Status Register
as a decimal number. This register contains the WAIT TRIG bit (bit 5) and the
OVLR bit (bit 11).

The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates
that the trigger is armed. The OVLR bit is set by the Overload Event Register.

Returned Format <value><NL>

23-19

Root Level Commands
OVLEnable

OVLEnable

Command :OVLEnable <enable_mask>

The :OVLEnable command enables the built-in overload protection in the
oscilloscope. If too much voltage is present at the channel input, the
oscilloscope switches to 1 MΩ input impedance.

This command changes the Overload Event Enable Register value which
enables or disables reading of the overload protection bits for all of the channel
inputs.

<enable_mask> The overload enable mask is an integer representing a channel as follows:

Bit 0 - Channel 1
Bit 1 - Channel 2
Bit 2 - Channel 3
Bit 3 - Channel 4
Bits 7-4 are not used and are set to zero (0).

Query :OVLEnable?

The :OVLEnable? query returns the current value contained in the Overload
Enable Register.

Returned Format [OVLEnable] <enable_mask><NL>

See Also :CHANnel<N>:PROTection:CLEar

23-20

Root Level Commands
OVLRegister?

OVLRegister?

Query :OVLRegister?

The :OVLRegister? query returns the value stored in the Overload Event
Register. Before the bits in this register can be read, the OVLEnable command
must be set to enable the bits for each channel.

The integer value returned by this query represents the channels as follows:

Bit 0 - Channel 1
Bit 1 - Channel 2
Bit 2 - Channel 3
Bit 3 - Channel 4
Bits 7-4 are not used and are set to zero (0).

Returned Format <value><NL>

23-21

Root Level Commands
PRINt

PRINt

Command :PRINt

The :PRINt command outputs a copy of the screen to a printer or other device
destination specified in the HARDcopy subsystem. You can specify the
selection of the output and the printer using the HARDcopy subsystem
commands.

Example This example outputs a copy of the screen to a printer or a disk file.

10 OUTPUT 707;":PRINT"
20 END

23-22

Root Level Commands
RECall:SETup

RECall:SETup

Command :RECall:SETup <setup_memory_num>

<setup
_memory_num>

Setup memory number, an integer, 0 through 9.

The :RECall:SETup command recalls a setup that was saved in one of the
oscilloscope’s setup memories. You can save setups using either the
:STORe:SETup command or the front panel.

Examples This command recalls a setup from setup memory 2.

10 OUTPUT 707;":RECall:SETup 2"
20 END

23-23

Root Level Commands
RUN

RUN

Command :RUN

The :RUN command starts the oscilloscope running. When the oscilloscope is
running, it acquires waveform data according to its current settings. Acquisition
runs repetitively until the oscilloscope receives a :STOP command, or until there
is only one acquisition if Trigger Sweep is set to Single.

Example This example causes the oscilloscope to acquire data repetitively.

10 OUTPUT 707;":RUN"
20 END

23-24

Root Level Commands
SERial (Serial Number)

SERial (Serial Number)

Command :SERial {<serial_number>}

The :SERial command sets the serial number of the oscilloscope. A serial
number was entered in your oscilloscope by Agilent Technologies before it was
shipped to you. Therefore, setting the serial number is not normally required
unless the oscilloscope is serialized for a different application.

The oscilloscope’s serial number is part of the string returned for the *IDN?
query described in the Common Commands chapter.

<serial
_number>

A ten-character alphanumeric serial number enclosed with quotation marks.

Example This example sets the serial number for the oscilloscope to “US12345678”.

10 OUTPUT 707;":SERIAL ""US12345678"""
20 END

Query :SERial?

The query returns the current serial number string for the oscilloscope.

Returned Format [:SERial] US12345678

Example This example places the serial number for the oscilloscope in the string variable
Serial?, then prints the contents of the variable to the computer’s screen.
10 Dim Serial$[50]!Dimension variable
20 OUTPUT 707;":SERIAL?"
30 ENTER 707; Serial$
40 PRINT SERIAL$
50 END

23-25

Root Level Commands
SINGle

SINGle

Command :SINGle

The :SINGle command causes the oscilloscope to make a single acquisition when
the next trigger event occurs.

Example This example sets up the oscilloscope to make a single acquisition when the
next trigger event occurs.

10 OUTPUT 707;":SINGLE"
20 END

See Also :TRIGger:SWEep AUTO|TRIGgered|SINGle for how to turn the single sweep off.

23-26

Root Level Commands
STATus?

STATus?

Query :STATus? {CHANnel<N> | BUS<L> | DIGital |
DIGital<M> | FUNCtion<N> | HISTogram |
POD<L>} | WMEMory<N>}

The :STATus? query shows whether the specified channel, function, wmemory,
histogram, digital subsystem, digital channel, digital pod, or digital bus is on or
off. A return value of 1 means on and a return value of 0 means off. Digital
channels will only be displayed on screen if the digital subsystem is on.

<N> An integer, 1 - 4

<M> DIGital<M> is an integer 0-15 for MSO Infiniium Oscilloscopes.

<L> POD<L> and BUS<L> is an integer 1-2 for MSO Infiniium Oscilloscopes.

Returned Format [:STATus] {0 | 1}<NL>

Example This example returns and prints the current status of channel 1.
10 OUTPUT 707;":STATUS? CHANNEL1"
30 ENTER 707;Current$
40 PRINT Current$
50 END

23-27

Root Level Commands
STOP

STOP

Command :STOP

The :STOP command causes the oscilloscope to stop acquiring data. To restart
the acquisition, use the :RUN or :SINGle command.

Example This example stops the current data acquisition.

10 OUTPUT 707;":STOP"
20 END

23-28

Root Level Commands
STORe:SETup

STORe:SETup

Command :STORe:SETup <setup_memory_num>

<setup
_memory_num>

Setup memory number, an integer, 0 through 9.

The :STORe:SETup command saves the current oscilloscope setup in one of the
setup memories.

Example This example stores the current oscilloscope setup to setup memory 0.
10 OUTPUT 707;":STORE:SETUP 0"
20 END

23-29

Root Level Commands
STORe:WAVeform

STORe:WAVeform

Command :STORe:WAVeform {{CHANnel<N> | FUNCtion<N> |
WMEMory<N>},{WMEMory<N>}}

<N> An integer, 1 - 4

The :STORe:WAVeform command copies a channel, function, or stored
waveform to a waveform memory. The parameter preceding the comma
specifies the source and can be any channel, function, or waveform memory.
The parameter following the comma is the destination, and can be any waveform
memory.

The WAVEform:VIEW command determines how much data is stored. If you
select ALL, all of the data in the waveform record is referenced. If you select
MAIN, only the data in the main time base range is referenced. The first value
corresponds to the first time bucket in the main time base range, and the last
value corresponds to the last time bucket in the main time base range. If
WINDow is selected, only data in the delayed view is referenced. The first value
corresponds to the first time bucket in the delayed view and the last value
corresponds to the last time bucket in the delayed view.

Example This example copies channel 1 to waveform memory 3.
10 OUTPUT 707;":STORE:WAVEFORM CHANNEL1,WMEMORY3"
20 END

23-30

Root Level Commands
TER? (Trigger Event Register)

TER? (Trigger Event Register)

Query :TER?

The :TER? query reads the Trigger Event Register. A “1” is returned if a trigger
has occurred. A “0” is returned if a trigger has not occurred.

Returned Format {1 | 0}<NL>

Example This example checks the current status of the Trigger Event Register, places
the status in the string variable, Current$, then prints the contents of the
variable to the computer's screen.
10 DIM Current$[50]!Dimension variable
20 OUTPUT 707;":TER?"
30 ENTER 707;Current$
40 PRINT Current$
50 END

Once this bit is set, you can clear it only by reading the register with the :TER?
query, or by sending a *CLS common command. After the Trigger Event
Register is read, it is cleared.

23-31

Root Level Commands
VIEW

VIEW

Command :VIEW {BUS1 | BUS2 | CHANnel<N> | FUNCtion<N> |
HISTogram | WMEMory<N> | <channel_list> |
<digital_channel> | POD1 | POD2}

The :VIEW command turns on a channel, function, histogram, waveform
memory, or digital channel.

<N> An integer, 1 - 4

<channel_list> The channel range is from 0 to 15 in the following format.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

POD1 Bits 0 through 7 are turned on.

POD2 Bits 8 through 15 are turned on.

Example This example turns on channel 1.
10 OUTPUT 707;":VIEW CHANNEL1"
20 END

See Also The :BLANk command turns off a channel, function, histogram, digital channel,
or waveform memory.

(@1,5,7,9) channels 1, 5, 7, and 9 are turned on.

(@1:15) channels 1 through 15 are turned on.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14 are turned on.

23-32

24

Self-Test Commands

24-2

Self Test Commands

The SELFtest subsystem commands set up the self test dialog and run
the oscilloscope’s self tests.

These SELFtest commands and queries are implemented in the
Infiniium Oscilloscopes:

• CANCel
• SCOPETEST

Enclose File Name in Quotation Marks

When specifying a file name, you must enclose it in quotation marks.

24-3

Self-Test Commands
CANCel

CANCel

Command :SELFtest:CANCel

The :SELFtest:CANCel command stops the currenly running selftest.

Example This example stops the currently running selftest.
10 OUTPUT 707;":SELF:CANC"
20 END

24-4

Self-Test Commands
SCOPETEST

SCOPETEST

Command :SELFtest:SCOPETEST

The :SELFtest:SCOPETEST command brings up the self-test dialog in customer
self-test mode (Service Extensions Off) and runs the test, “Scope Self Tests.”
Use the :SELFtest:SCOPETEST? query to determine the status of the test.

Example This example brings up the self-test dialog and runs the oscilloscope self-tests.
10 OUTPUT 707;":SELF:SCOPETEST"
20 END

Query :SELFtest:SCOPETEST?

Returned Format [:SELFtest:SCOPETEST] <test_name>,<test_status>,
<time_stamp><NL>

<test_name> A string as follows: “Scope Self Tests”.

<time_stamp> The time stamp follows the test name and test status, and is the part of the
returned string that includes the date and time, in the format:
“29 AUG 2001 10:13:35”.

Example This example places the current status of the self-test in the string variable,
Txt$, then prints the contents of the variable to the computer's screen.
10 DIM Txt$[64]
20 OUTPUT 707;":SELF:SCOPETEST?"
30 ENTER 707;Txt$
40 PRINT Txt$
50 END

<test_status> Status Description
FAILED Test completed and failed.
PASSED Test completed and passed.
WARNING Test passed but warning message was issued.
CANCELLED Test was cancelled by user.
NODATA Self-tests have not been executed on this instrument.
INPROGRESS Test is in progress.

25

System Commands

25-2

System Commands

SYSTem subsystem commands control the way query responses are
formatted, send and receive setup strings, and enable reading and
writing to the advisory line of the oscilloscope. You can also set and read
the date and time in the oscilloscope using the SYSTem subsystem
commands.

These SYSTem commands and queries are implemented in the Infiniium
Oscilloscopes:

• DATE
• DEBug
• DSP
• ERRor?
• HEADer
• LOCK
• LONGform
• PRESet
• SETup
• TIME

25-3

System Commands
DATE

DATE

Command :SYSTem:DATE <day>,<month>,<year>

The :SYSTem:DATE command sets the date in the oscilloscope, and is not
affected by the *RST common command.

<year> Specifies the year in the format <yyyy> | <yy>. The values range from
1992 to 2035.

<month> Specifies the month in the format <1, 2, . . . 12> | <JAN, FEB, MAR . . .>.

<day> Specifies the day in the format <1 . . . 31>.

Example This example sets the date to July 1, 1997.
10 OUTPUT 707;":SYSTEM:DATE 1,7,97"
20 END

Query :SYSTem:DATE?

The :SYSTem:DATE? query returns the current date in the oscilloscope.

Returned Format [:SYSTem:DATE] <day> <month> <year><NL>

Example This example queries the date.
10 DIM Date$ [50]
20 OUTPUT 707;":SYSTEM:DATE?"
30 ENTER 707; Date$
40 PRINT Date$

25-4

System Commands
DEBug

DEBug

Command :SYSTem:DEBug {{ON|1}[,<output_mode>[,"<file_name>"
[,<create_mode>]]] | {OFF|0}}

The :SYSTem:DEBug command turns the debug m ode on and off. This mode
enables the tracing of incoming GPIB commands. If you select CREate mode,
a new file is created, and/or an existing file is overwritten. If you select APPend
mode, the information is appended to an existing file. The :SYSTem:DEBug
command shows any header and/or parameter errors.

The default create mode is CREate, the default output mode is FileSCReen, and
the default file name is c:\scope\data\debug.txt. In debug mode, the File View
button lets you view the current debug file, or any other debug file. This is a
read-only mode.

<output_mode> {FILE | SCReen | FileSCReen}

<file_name> An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used). The file name assumes the present working
directory if a path does not precede the file name.

<create_mode> {CREate | APPend}

Examples This example turns on the debug/trace mode and creates a debug file.
10 OUTPUT 707;":SYSTEM:DEBUG ON,FILE,

"C:\scope\data\pacq8xx.txt",CREATE"
20 END

The created file resembles:
Debug information file C:\scope\data\pacq8xx.txt
Date: 1 NOV 2001
Time: 09:59:35
Model: 54830B
Serial#: sn ?
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$
>:ACQuire:BEST FLATness$<NL>
? ^
?-113, Undefined header
>:syst:err? string$<NL>
<:SYSTEM:ERROR -113,"Undefined header"$
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$

This example appends information to the debug file.

25-5

System Commands
DEBug

10 OUTPUT 707;":SYSTEM:DEBUG ON,FILE,
"C:\scope\data\pacq8xx.txt",APPEND"

20 END

After appending information, the file resembles:
Debug information file C:\scope\data\pacq8xx.txt
Date: 1 NOV 2001
Time: 09:59:35
Model: 54830B
Serial#: sn ?
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$
>:ACQuire:BEST FLATness$<NL>
? ^
?-113, Undefined header
>:syst:err? string$<NL>
<:SYSTEM:ERROR -113,"Undefined header"$
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$

Debug information file C:\scope\data\pacq8xx.txt appended
Date: 1 NOV 2001
Time: 10:10:35
Model: 54830B
Serial#: sn ?
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$
>:ACQuire:BEST FLATness$<NL>
? ^
?-113, Undefined header
>:syst:err? string$<NL>
<:SYSTEM:ERROR -113,"Undefined header"$

Query :SYSTem:DEBug?

The :SYSTem:DEBug? query returns the current debug mode settings.

Returned Format [:SYSTem:DEBug] {{1,<output_mode>,"<file_name>",
<create_mode>} | 0} <NL>

25-6

System Commands
DSP

DSP

Command :SYSTem:DSP "<string>"

The :SYSTem:DSP command writes a quoted string, excluding quotation marks,
to the advisory line of the instrument display. If you want to clear a message
on the advisory line, send a null (empty) string.

<string> An alphanumeric character array up to 89 bytes long.

Example This example writes the message, “Test 1” to the advisory line of the
oscilloscope.
10 OUTPUT 707;":SYSTEM:DSP ""Test 1"""
20 END

Query :SYSTem:DSP?

The :SYSTem:DSP? query returns the last string written to the advisory line.
This may be a string written with a :SYSTem:DSP command, or an internally
generated advisory.

The string is actually read from the message queue. The message queue is
cleared when it is read. Therefore, the displayed message can only be read once
over the bus.

Returned Format [:SYSTem:DSP] <string><NL>

Example This example places the last string written to the advisory line of the
oscilloscope in the string variable, Advisory$. Then, it prints the contents of
the variable to the computer's screen.
10 DIM Advisory$[89]!Dimension variable
20 OUTPUT 707;":SYSTEM:DSP?"
30 ENTER 707;Advisory$
40 PRINT Advisory$
50 END

25-7

System Commands
ERRor?

ERRor?

Query :SYSTem:ERRor? [{NUMBer | STRing}]

The :SYSTem:ERRor? query outputs the next error number in the error queue
over the GPIB. When either NUMBer or no parameter is specified in the query,
only the numeric error code is output. When STRing is specified, the error
number is output followed by a comma and a quoted string describing the error.
Table 30-1 lists the error numbers and their corresponding error messages.

Returned Format [:SYSTem:ERRor] <error_number>[,<quoted_string>]<NL>

<error_number> A numeric error code.

<quoted_string> A quoted string describing the error.

Example This example reads the oldest error number and message in the error queue
into the string variable, Condition$, then prints the contents of the variable to
the computer's screen.
10 DIM Condition$[64]!Dimension variable
20 OUTPUT 707;":SYSTEM:ERROR? STRING"
30 ENTER 707;Condition$
40 PRINT Condition$
50 END

Infiniium Oscilloscopes have an error queue that is 30 errors deep and operates
on a first-in, first-out (FIFO) basis. Successively sending the :SYSTem:ERRor?
query returns the error numbers in the order that they occurred until the queue
is empty. When the queue is empty, this query returns headers of 0, “No error.”
Any further queries return zeros until another error occurs. Note that front-
panel generated errors are also inserted in the error queue and the Event Status
Register.

See Also The “Error Messages” chapter for more information on error messages and their
possible causes.

Send *CLS Before Other Commands or Queries

Send the *CLS common command to clear the error queue and Event Status Register
before you send any other commands or queries.

25-8

System Commands
HEADer

HEADer

Command :SYSTem:HEADer {{ON|1} | {OFF|0}}

The :SYSTem:HEADer command specifies whether the instrument will output
a header for query responses. When :SYSTem:HEADer is set to ON, the query
responses include the command header.

Example This example sets up the oscilloscope to output command headers with query
responses.
10 OUTPUT 707;":SYSTEM:HEADER ON"
20 END

Query :SYSTem:HEADer?

The :SYSTem:HEADer? query returns the state of the :SYSTem:HEADer
command.

Returned Format [:SYSTem:HEADer] {1|0}<NL>

25-9

System Commands
HEADer

Example This example examines the header to determine the size of the learn string.
Memory is then allocated to hold the learn string before reading it. To output
the learn string, the header is sent, then the learn string and the EOF.
10 DIM Header$[64]
20 OUTPUT 707;"syst:head on"
30 OUTPUT 707;":syst:set?"
40 More_chars: !
50 ENTER 707 USING "#,A";This_char$
60 Header$=Header$&This_char$
70 IF This_char$<>"#" THEN More_chars
80 !
90 ENTER 707 USING "#,D";Num_of_digits
100 ENTER 707 USING "#,"&VAL$(Num_of_digits)&"D";Set_size
110 Header$=Header$&"#"&VAL$(Num_of_digits)&VAL$(Set_size)
120 !
130 ALLOCATE INTEGER Setup(1:Set_size)
140 ENTER 707 USING "#,B";Setup(*)
150 ENTER 707 USING "#,A";Eof$
160 !
170 OUTPUT 707 USING "#,-K";Header$
180 OUTPUT 707 USING "#,B";Setup(*)
190 OUTPUT 707 USING "#,A";Eof$
200 END

25-10

System Commands
LOCK

LOCK

Command :SYSTem:LOCK {{ON|1} | {OFF|0}}

The :SYSTem:LOCK ON command puts the oscilloscope into the full screen
mode and disables the front panel. The front panel can be re-enabled by send
the :SYSTem:LOCK OFF command or by using the mouse to click on the Graphic
Interface button in the upper right-hand corner of the oscilloscope screen.

Example This example disables the oscilloscope’s front panel.
10 OUTPUT 707;":SYSTEM:LOCK ON"
20 END

Query :SYSTem:LOCK?

The :SYSTem:LOCK? query returns the state of the :SYSTem:LOCK command.

Returned Format [:SYSTem:LOCK] {1|0}<NL>

25-11

System Commands
LONGform

LONGform

Command :SYSTem:LONGform {{ON|1} | {OFF|0}}

The :SYSTem:LONGform command specifies the format for query responses.
If the LONGform is set to OFF, command headers and alpha arguments are sent
from the oscilloscope in the short form (abbreviated spelling). If LONGform is
set to ON, the whole word is output.

Example This example sets the format for query responses from the oscilloscope to the
short form (abbreviated spelling).
10 OUTPUT 707;":SYSTEM:LONGFORM OFF"
20 END

Query :SYSTem:LONGform?

The :SYSTem:LONGform? query returns the current state of the
:SYSTem:LONGform command.

Returned Format [:SYSTem:LONGform] {1|0}<NL>

25-12

System Commands
LONGform

Example This example checks the current format for query responses from the
oscilloscope, and places the result in the string variable, Result$. Then, it prints
the contents of the variable to the computer's screen.
10 DIM Result$[50]!Dimension variable
20 OUTPUT 707;":SYSTEM:LONGFORM?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

LONGform Does Not Affect Input Headers and Arguments

LONGform has no effect on input headers and arguments sent to the instrument. You
may send headers and arguments to the oscilloscope in either the long form or
short form, regardless of the current state of the :SYSTem:LONGform command.

25-13

System Commands
SETup

SETup

Command :SYSTem:SETup <binary_block_data>

The :SYSTem:SETup command sets up the oscilloscope as defined by the data
in the setup string from the computer.

<binary
_block_data>

A string, consisting of bytes of setup data. The number of bytes is a dynamic
number that is read and allocated by oscilloscope’s software.

Example This example sets up the instrument as defined by the setup string stored in
the variable, Set$.
10 OUTPUT 707 USING "#,-K";":SYSTEM:SETUP ";Set$
20 END

Query :SYSTem:SETup?

The :SYSTem:SETup? query outputs the oscilloscope's current setup to the
computer in binary block data format as defined in the IEEE 488.2 standard.

Returned Format [:SYSTem:SETup] #NX...X<setup_data_string><NL>

The first character in the setup data string is a number added for disk
operations.

HP BASIC Image Specifiers

is an HP BASIC image specifier that suppresses the automatic output of the EOI
sequence following the last output item.

K is an HP BASIC image specifier that outputs a number or string in standard form
with no leading or trailing blanks.

25-14

System Commands
SETup

Example This example stores the current oscilloscope setup in the string variable, Set$.
10 DIM Set$[15000]!Dimension variable
20 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
30 OUTPUT 707;":SYSTEM:SETUP?"
40 ENTER 707 USING "-K";Set$
50 END

HP BASIC Image Specifiers

−K is an HP BASIC image specifier which places the block data in a string, including
carriage returns and line feeds, until EOI is true, or the dimensioned length of the
string is reached.

:SYSTem:SETup Can Operate Just Like *LRN?

When headers and LONGform are on, the :SYSTem:SETup? query operates the
same as the *LRN? query in the common commands. Otherwise, *LRN? and
:SYSTem:SETup are not interchangeable.

25-15

System Commands
TIME

TIME

Command :SYSTem:TIME <hour>,<minute>,<second>

The :SYSTem:TIME command sets the time in the oscilloscope and is not
affected by the *RST common command.

<hour> 0..23

<minute> 0..59

<second> 0..59

Example This example sets the oscilloscope time to 10:30:45 a.m.
10 OUTPUT 707;":SYSTEM:TIME 10,30,45"
20 END

Query :SYSTem:TIME?

The :SYSTem:TIME? query returns the current time in the oscilloscope.

Returned Format [:SYSTem:TIME] <hour>,<minute>,<second>

25-16

26

Time Base Commands

26-2

Time Base Commands

The TIMebase subsystem commands control the horizontal (X axis)
oscilloscope functions. These TIMebase commands and queries are
implemented in the Infiniium Oscilloscopes:

• POSition
• RANGe
• REFerence
• ROLL:ENABLE
• SCALe
• VIEW
• WINDow:DELay
• WINDow:POSition
• WINDow:RANGe
• WINDow:SCALe

26-3

Time Base Commands
POSition

POSition

Command :TIMebase:POSition <position_value>

The :TIMebase:POSition command sets the time interval between the trigger
event and the delay reference point. The delay reference point is set with the
:TIMebase:REFerence command.

<position
_value>

A real number for the time in seconds from trigger to the delay reference point.
The maximum value depends on the time/division setting.

Example This example sets the delay position to 2 ms.
10 OUTPUT 707;":TIMEBASE:POSITION 2E-3"
20 END

Query :TIMebase:POSition?

The :TIMebase:POSition? query returns the current delay value in seconds.

Returned Format [:TIMebase:POSition] <position_value><NL>

Example This example places the current delay value in the numeric variable, Value, then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

26-4

Time Base Commands
RANGe

RANGe

Command :TIMebase:RANGe <full_scale_range>

The :TIMebase:RANGe command sets the full-scale horizontal time in seconds.
The range value is ten times the time-per-division value.

<full_scale
_range>

A real number for the horizontal time, in seconds.

Example This example sets the full-scale horizontal range to 10 ms.
10 OUTPUT 707;":TIMEBASE:RANGE 10E-3"
20 END

Query :TIMebase:RANGe?

The :TIMebase:RANGe? query returns the current full-scale horizontal time.

Returned Format [:TIMebase:RANGe] <full_scale_range><NL>

Example This example places the current full-scale horizontal range value in the numeric
variable, Setting, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:RANGE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

26-5

Time Base Commands
REFerence

REFerence

Command :TIMebase:REFerence {LEFT | CENTer | RIGHt}

The :TIMebase:REFerence command sets the delay reference to the left, center,
or right side of the display.

Example This example sets the delay reference to the center of the display.
10 OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
20 END

Query :TIMebase:REFerence?

The :TIMebase:REFerence? query returns the current delay reference position.

Returned Format [:TIMebase:REFerence] {LEFT | CENTer | RIGHt}<NL>

Example This example places the current delay reference position in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":TIMEBASE:REFERENCE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

26-6

Time Base Commands
ROLL:ENABLE

ROLL:ENABLE

Command :TIMebase:ROLL:ENABLE {{ON | 1} | {OFF | 0}}

The :TIMebase:ROLL:ENABLE command enables or disables the roll mode
feature.

Example This example tuns on the roll mode.
10 OUTPUT 707;":TIMEBASE:ROLL:ENABLE ON"
20 END

Query :TIMebase:ROLL:ENABLE?

The :TIMebase:ROLL:ENABLE? query returns the current state of the roll mode
enable control.

Returned Format [:TIMebase:ROLL:ENABLE] {1 | 0}<NL>

Example This example places the current value of the roll mode enable control in the
variable, Setting, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:ROLL:ENABLE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

26-7

Time Base Commands
SCALe

SCALe

Command :TIMebase:SCALe <time>

The :TIMebase:SCALe command sets the time base scale. This corresponds to
the horizontal scale value displayed as time/div on the oscilloscope screen.

<time> A real number for the time value, in seconds per division.

Example This example sets the scale to 10 ms/div.
10 OUTPUT 707;":TIMEBASE:SCALE 10E-3"
20 END

Query :TIMebase:SCALe?

The :TIMebase:SCALe? query returns the current scale time setting.

Returned Format [:TIMebase:SCALe] <time><NL>

Example This example places the current scale value in the numeric variable, Setting,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:SCALE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

26-8

Time Base Commands
VIEW

VIEW

Command :TIMebase:VIEW {MAIN | WINDow}

The :TIMebase:VIEW command turns the delayed displayed view on and off.
This is the same as using the front panel Delayed button.

Example This example turns the delayed view on.
10 OUTPUT 707;":TIMEBASE:VIEW WINDOW"
20 END

Query :TIMebase:VIEW?

The :TIMebase:VIEW? query returns Infiniium’s current view.

Returned Format [:TIMebase:VIEW] {MAIN | WINDow}<NL>

Example This example places the current view in the string variable, State$, then prints
the contents of the variable to the computer's screen.
10 DIM State$[50]!Dimension variable
20 OUTPUT 707;":TIMEBASE:VIEW?"
30 ENTER 707;State$
40 PRINT State$
50 END

26-9

Time Base Commands
WINDow:DELay

WINDow:DELay

Command :TIMebase:WINDow:DELay <delay_value>

The :TIMebase:WINDow:DELay sets the horizontal position in the delayed view
of the main sweep. The range for this command is determined by the main
sweep range and the main sweep horizontal position. The value for this
command must keep the time base window within the main sweep range.

<delay_value> A real number for the time in seconds from the trigger event to the delay
reference point. The maximum position depends on the main sweep range and
the main sweep horizontal position.

Example This example sets the time base window delay position to 20 ns.
10 OUTPUT 707;":TIMEBASE:WINDOW:DELAY 20E-9"
20 END

This Command is Provided for Compatibility

This command has the same function as the :TIMebase:WINDow:POSition
command, and is provided for compatibility with programs written for previous
oscilloscopes. The preferred command for compatibility with Infiniium
Oscilloscopes is :TIMebase:WINDow:POSition.

26-10

Time Base Commands
WINDow:DELay

Query :TIMebase:WINDow:DELay?

The :TIMebase:WINDow:DELay? query returns the current horizontal position
in the delayed view.

Returned Format [:TIMebase:WINDow:DELay] <delay_position><NL>

Example This example places the current horizontal position in the delayed view in the
numeric variable, Setting, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:WINDOW:DELAY?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

See Also The :TIMebase:WINDow:POSition command performs the same function as this
command and should be used in new programs.

26-11

Time Base Commands
WINDow:POSition

WINDow:POSition

Command :TIMebase:WINDow:POSition <position_value>

The :TIMebase:WINDow:POSition sets the horizontal position in the delayed
view of the main sweep. The range for this command is determined by the main
sweep range and the main sweep horizontal position. The value for this
command must keep the time base window within the main sweep range.

<position
_value>

A real number for the time in seconds from the trigger event to the delay
reference point. The maximum position depends on the main sweep range and
the main sweep horizontal position.

Example This example sets the time base window delay position to 20 ns.
10 OUTPUT 707;":TIMEBASE:WINDOW:POSITION 20E-9"
20 END

Query :TIMebase:WINDow:POSition?

The :TIMebase:WINDow:POSition? query returns the current horizontal
position in the delayed view.

Returned Format [:TIMebase:WINDow:POSition] <position_value><NL>

Example This example places the current horizontal position in the delayed view in the
numeric variable, Setting, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:WINDOW:POSITION?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

26-12

Time Base Commands
WINDow:RANGe

WINDow:RANGe

Command :TIMebase:WINDow:RANGe <full_scale_range>

The :TIMebase:WINDow:RANGe command sets the full-scale range of the
delayed view. The range value is ten times the time per division of the delayed
view. The maximum range of the delayed view is the current main range. The
minimum delayed view range is 10 ps (1 ps/div).

<full_scale
_range>

A real number for the full-scale range of the time base window, in seconds.

Example This example sets the full-scale range of the delayed view to 100 ns.
10 OUTPUT 707;":TIMEBASE:WINDOW:RANGE 100E-9"
20 END

Query :TIMebase:WINDow:RANGe?

The :TIMebase:WINDow:RANGe? query returns the current full-scale range of
the delayed view.

Returned Format [:TIMebase:WINDow:RANGe] <full_scale_range><NL>

Example This example reads the current full-scale range of the delayed view into the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:WINDOW:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

26-13

Time Base Commands
WINDow:SCALe

WINDow:SCALe

Command :TIMebase:WINDow:SCALe <time>

The :TIMebase:WINDow:SCALe command sets the time/div in the delayed view.
This command rescales the horizontal components of displayed waveforms.

<time> A real number for the delayed windows scale.

Example This example sets the scale of the time base window to
2 milliseconds/div.
10 OUTPUT 707;":TIMEBASE:WINDOW:SCALE 2E-3"
20 END

Query :TIMebase:WINDow:SCALe?

The :TIMebase:WINDow:SCALe? query returns the scaled window time, in
seconds/div.

Returned Format [:TIMebase:WINDow:SCALe] <time><NL>

26-14

27

Trigger Commands

27-2

Trigger Commands

The oscilloscope trigger circuitry helps you locate the waveform you
want to view. There are several different types of triggering, but the one
that is used most often is edge triggering. Edge triggering identifies a
trigger condition by looking for the slope (rising or falling) and voltage
level (trigger level) on the source you select. Any input channel,
auxiliary input trigger (only in 4-channel oscilloscopes), line, or external
trigger (only in 2-channel oscilloscopes) can be used as the trigger
source.

The commands in the TRIGger subsystem define the conditions for
triggering. Many of the commands in the TRIGger subsystem are used
in more than one of the trigger modes. The command set has been
defined to closely represent the front-panel trigger menus. As a trade-
off, there may be less compatibility between Infiniium Oscilloscopes and
command sets for previous oscilloscopes. Infiniium Oscilloscopes still
accept some commands for compatibility with previous instruments. An
alternative command that is accepted by the oscilloscope is noted for a
particular command.

These TRIGger commands and queries are implemented in the Infiniium
Oscilloscopes:

• :HOLDoff
• :HYSTeresis
• :LEVel
• :SWEep

• :MODE {EDGE | GLITch | ADVanced}

• :EDGe {:SLOPe | :SOURce | :COUPling}
• :GLITch {:POLarity | :SOURce | :WIDTh}
• :ADVanced:MODE {DELay | PATTern | STATe | TV | VIOLation}
• :ADVanced:MODE COMM
• :ADVanced:COMM:{BWIDth | ENCode | LEVel | PATTern | POLarity |

SOURce}
• :ADVanced:MODE DELay

27-3

• :ADVanced:DELay
• :ADVanced:DELay:MODE {EDLY | TDLY}

• :ADVanced:MODE PATTern
• :ADVanced:PATTern {:CONDition | :LOGic | :THReshold}

• :ADVanced:MODE STATe
• :ADVanced:STATE {:CLOCk | :CONDition | :LOGic | :SLOPe |

:THReshold}

• :ADVanced:MODE TV
• :ADVanced:TV
• :ADVanced:TV:MODE {L525 | L625 | UDTV}

• :ADVanced:MODE VIOLation
• :ADVanced:VIOLation (See the following list.)
The :TRIGger:ADVanced:VIOLation modes and commands described in
this chapter include:

• :VIOLation:MODE SETup

• :VIOLation:SETup:MODE SETup
• :VIOLation:SETup:SETup:CSOurce
• :VIOLation:SETup:SETup:CSOurce:LEVel
• :VIOLation:SETup:SETup:CSOurce:EDGE
• :VIOLation:SETup:SETup:DSOurce
• :VIOLation:SETup:SETup:DSOurce:LTHReshold
• :VIOLation:SETup:SETup:DSOurce:HTHReshold
• :VIOLation:SETup:SETup:TIME
• :VIOLation:SETup:MODE HOLD
• :VIOLation:SETup:HOLD:CSOurce
• :VIOLation:SETup:HOLD:CSOurce:LEVel
• :VIOLation:SETup:HOLD:CSOurce:EDGE
• :VIOLation:SETup:HOLD:DSOurce
• :VIOLation:SETup:HOLD:DSOurce:LTHReshold
• :VIOLation:SETup:HOLD:DSOurce:HTHReshold
• :VIOLation:SETup:HOLD:TIME

• :VIOLation:SETup:MODE SHOLd

27-4

• :VIOLation:SETup:SHOLd:CSOurce
• :VIOLation:SETup:SHOLd:CSOurce:LEVel
• :VIOLation:SETup:SHOLd:CSOurce:EDGE
• :VIOLation:SETup:SHOLd:DSOurce
• :VIOLation:SETup:SHOLd:DSOurce:LTHReshold
• :VIOLation:SETup:SHOLd:DSOurce:HTHReshold
• :VIOLation:SETup:SHOLd:SetupTIMe
• :VIOLation:SETup:SHOLd:HoldTIMe

• :VIOLation:MODE TRANsition
• :VIOLation:TRANsition:SOURce
• :VIOLation:TRANsition:TYPE
• :VIOLation:TRANsition:GTHan
• :VIOLation:TRANsition:LTHan

• :VIOLation:MODE PWIDth
• :VIOLation:PWIDth:SOURce
• :VIOLation:PWIDth:POLarity
• :VIOLation:PWIDth:DIRection
• :VIOLation:PWIDth:WIDTh

27-5

Organization of Trigger Modes and Commands

The trigger modes are summarized in the next section. In addition, each mode
is described before its set of commands in the following sections.

These general trigger commands are described first.

• HOLDoff

• HYSTeresis

• LEVel

• SWEep

The following sections in this chapter describe the individual trigger modes and
commands, and are organized in this order:

• EDGE

• GLITch

• ADVanced

• COMM

• DELay

• PATTern

• STATe

• TV

• VIOLation

27-6

Summary of Trigger Modes and Commands

Make sure the oscilloscope is in the proper trigger mode for the
command you want to send. One method of ensuring that the
oscilloscope is in the proper trigger mode is to send the :TRIGger:MODE
command in the same program message as the parameter to be set.

For example, these commands place the instrument in the advanced
triggering mode you select:

:TRIGger:MODE ADVanced
:TRIGger:ADVanced:MODE <Advanced_trigger_mode>

<Advanced
_trigger_mode>

Advanced trigger modes include COMM, DELay, PATTern, STATe, TV,
and VIOLation. Each mode is described with its command set in this
chapter.

Summary of Trigger Commands

The following table lists the TRIGger subsystem commands that are
available for each trigger mode.

Trigger Commands

27-7

Table 27-1

Valid Commands for Specific Trigger Modes

Main Level EDGE GLITch
HOLDoff
HTHRshold
HYSTeresis
LEVel
LTHRshold
MODE
SWEep

COUPling
SLOPe
SOURce

POLarity
SOURce
WIDTh

Advanced Triggering Modes and Commands
COMM DELay PATTern STATe TV VIOLation
BWIDth
ENCode
LEVel
PATTern
POLarity
SOURce

MODE
 EDLY
 ARM
 EVENt
 TRIGger
 TDLY
 ARM
 DELay
 TRIGger

CONDition
LOGic
THReshold

CLOCk
CONDition
LOGic
SLOPe
THReshold

MODE
 {L525 | L625 | UDTV}
 STV
 FIELd
 LINE
 SOURce
 SPOLarity
 UDTV
 ENUMber
 PGTHan
 POLarity
 SOURce

MODE
 PWIDth
 SETup
 TRANsition

(See the
:TRIGger:ADVanced:VIOLation
commands in this chapter for
descriptions of the various
violation modes and commands.)

Use :TRIGger:SWEep to Select Sweep Mode

Select the Infiniium Oscilloscope’s Auto, Triggered, or Single Sweep mode with
:TRIGger:SWEep {AUTO | TRIGgered | SINGle}.

27-8

Trigger Commands
Trigger Modes

Trigger Modes

Command :TRIGger:MODE {EDGE | GLITch | ADVanced}

The :TRIGger:MODE command selects the trigger mode.

Table 27-2 Trigger Mode Settings

Query :TRIGger:MODE?

The query returns the currently selected trigger mode.

Returned Format [:TRIGger:MODE] {EDGE | GLITch | ADVanced}<NL>

Mode Definition

EDGE Edge trigger mode.

GLITch Trigger on a pulse that has a width less than a specified amount of time.

ADVanced Allows access to the DELay, PATTern, STATe, TV, and VIOLation modes.

 COMM COMM mode lets you trigger on a serial pattern of bits in a waveform.

 DELay Delay by Events mode lets you view pulses in your waveform that occur a
number of events after a specified waveform edge. Delay by Time mode lets
you view pulses in your waveform that occur a long time after a specified
waveform edge.

 PATTern Pattern triggering lets you trigger the oscilloscope using more than one
channel as the trigger source. You can also use pattern triggering to trigger
on a pulse of a given width.

 STATe State triggering lets you set the oscilloscope to use several channels as the
trigger source, with one of the channels being used as a clock waveform.

 TV TV trigger mode lets you trigger the oscilloscope on one of the standard
television waveforms. You can also use this mode to trigger on a custom
television waveform that you define.

 VIOLation Trigger violation modes: Pulse WIDth, SETup, TRANsition.

27-9

Trigger Commands
HOLDoff

HOLDoff

Command :TRIGger:HOLDoff <holdoff_time>

The :TRIGger:HOLDoff command specifies the amount of time the oscilloscope
should wait after receiving a trigger before enabling the trigger again.

<holdoff_time> A real number for the holdoff time, ranging from 80 ns to 320 ms.

Query :TRIGger:HOLDoff?

The query returns the current holdoff value for the current mode.

Returned Format [:TRIGger:HOLDoff] <holdoff><NL>

27-10

Trigger Commands
HTHReshold

HTHReshold

Command :TRIGger:HTHReshold
{CHANnel<N>|EXTernal},<level>}

This command specifies the high threshold voltage level for the selected trigger
source. Set the high threshold level to a value considered to be a high level for
your logic family; your data book gives two values, VIH and VOH.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the voltage level for the trigger source.

Query :TRIGger:HTHReshold? {CHANnel<N>|EXTernal}

The query returns the currently defined high threshold voltage level for the
trigger source.

Returned Format [:TRIGger:HTHReshold {CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models.

27-11

Trigger Commands
HYSTeresis

HYSTeresis

Command :TRIGger:HYSTeresis {NORMal|NREJect}

The :TRIGger:HYSTeresis command specifies the trigger hysteresis (noise
reject) as either normal or maximum. The NORMal option is the typical
hysteresis selection. The NREJect (noise reject) option gives maximum
hysteresis but the lowest trigger bandwidth.

Query :TRIGger:HYSTeresis?

The query returns the current hysteresis setting.

Returned Format [:TRIGger:HYSTeresis] {NORMal|NREJect}<NL>

27-12

Trigger Commands
LEVel

LEVel

Command :TRIGger:LEVel {CHANnel<N>|AUX|EXTernal},<level>}

The :TRIGger:LEVel command specifies the trigger level on the specified
channel for the trigger source. Only one trigger level is stored in the oscilloscope
for each channel. This level applies to the channel throughout the trigger
dialogs (Edge, Glitch, and Advanced). This level also applies to all the High
Threshold (HTHReshold) values in the Advanced Violation menus.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the trigger level on the specified channel, External Trigger,
or Auxilliary Trigger Input.

Query :TRIGger:LEVel? {CHANnel<N>|AUX|EXTernal}

The query returns the specified channel’s trigger level.

Returned Format [:TRIGger:LEVel {CHANnel<N>|AUX|EXTernal},] <level><NL>

EXTernal and AUXiliary are Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models.

AUXiliary is only available in 4-channel Infiniium Oscilloscope models.

27-13

Trigger Commands
LTHReshold

LTHReshold

Command :TRIGger:LTHReshold {CHANnel<N>|EXTernal},<level>

This command specifies the low threshold voltage level for the selected trigger
source. This command specifies the low threshold voltage level for the selected
trigger source. Set the low threshold level to a value considered to be a low
level for your logic family; your data book gives two values, VIL and VOL.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the voltage level for the trigger source.

Query :TRIGger:LTHReshold? {CHANnel<N>|EXTernal}

The query returns the currently defined low threshold for the trigger source.

Returned Format [:TRIGger:LTHReshold {CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models.

27-14

Trigger Commands
SWEep

SWEep

Command :TRIGger:SWEep {AUTO|TRIGgered|SINGle}

The :TRIGger:SWEep command selects the oscilloscope sweep mode.

<AUTO> When you select AUTO, if a trigger event does not occur within a time
determined by the oscilloscope settings, the oscilloscope automatically forces
a trigger which causes the oscilloscope to sweep. If the frequency of your
waveform is 50 Hz or less, you should not use the AUTO sweep mode because
it is possible that the oscilloscope will automatically trigger before your
waveform trigger occurs.

<TRIGgered> When you select TRIGgered, if no trigger occurs, the oscilloscope will not sweep,
and the previously acquired data will remain on the screen.

<SINGle> When you select SINGle, if no trigger occurs, the oscilloscope will not sweep,
and the previously acquired data will remain on the screen.

Query :TRIGger:SWEep?

The query returns the specified channel’s trigger level.

Returned Format [:TRIGger:SWEep] {AUTO|TRIGgered|SINGle}<NL>

27-15

Edge Trigger Mode and Commands

The oscilloscope identifies an edge trigger by looking for the specified
slope (rising edge or falling edge) of your waveform. Once the slope is
found, the oscilloscope will trigger when your waveform crosses the
trigger level.

The Edge Trigger Mode is the easiest trigger mode to understand and
use from the front panel or over the remote interface, because it has the
least number of parameters to be set. This explanation of the trigger
mode commands follow the front-panel keys very closely. Refer to the
online help file for further explanations of the trigger operation.

In the Edge Trigger Mode, you must set the trigger source using the
:TRIGger:EDGE:SOURce command. This selects the source that the
oscilloscope triggers on. The argument for the :TRIGger:EDGE:SOURce
command is CHANnel<n> (where n = 1 through 4) AUX, or LINE (or
External for 2-channel units).

After setting the trigger source, set the trigger slope. The actual edge
that creates the trigger is set with the :TRIGger:EDGE:SLOPe command.
You can set this command to POSitive or NEGative for each of the
sources, except LINE.

Set the trigger level for the trigger source. Only one trigger level is stored
in the oscilloscope for each channel. The trigger level values that are set
in the Edge Trigger Mode are used for all modes. Any levels set in the
PATTern, STATe, or DELay, TV, or violation (high threshold) modes set
the levels for the EDGE mode. LINE has no level.

Available trigger conditioning includes HOLDoff, HYSTeresis (Noise
Reject) and COUPling.

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:EDGE commands, set the mode
by entering:

:TRIGger:MODE EDGE

27-16

This command sets the conditions for the EDGE slope and source trigger
commands.

To query the oscilloscope for the trigger mode, enter:

:TRIGger:MODE?

You set up the :TRIGger:EDGE commands with the following commands
and queries:

• COUPling
• SLOPe
• SOURce

27-17

Trigger Commands
EDGE:COUPling

EDGE:COUPling

Command :TRIGger:EDGE:COUPling {AC|DC|LFReject|HFReject}

The :TRIGger:EDGE:COUPling command sets the trigger coupling when
:TRIG:EDGE:SOURce is set to one of the channels, or to External (for 2-channel
oscilloscope models).

Query :TRIGger:EDGE:COUPling?

The query returns the currently selected coupling for the specified edge trigger
source.

Returned Format [:TRIGger:EDGE:COUPling] {AC|DC|LFReject|HFReject}<NL>

27-18

Trigger Commands
EDGE:SLOPe

EDGE:SLOPe

Command :TRIGger:EDGE:SLOPe {POSitive|NEGative}

The :TRIGger:EDGE:SLOPe command sets the slope of the trigger source
previously selected by the :TRIGger:EDGE:SOURce command. The LINE
source has no slope.

Query :TRIGger:EDGE:SLOPe?

The query returns the currently selected slope for the specified edge trigger
source.

Returned Format [:TRIGger:EDGE:SLOPe] {POS|NEG}<NL>

27-19

Trigger Commands
EDGE:SOURce

EDGE:SOURce

Command :TRIGger:EDGE:SOURce {CHANnel<N> | <digital_channel>
| AUX | LINE | EXTernal}

The :TRIGger:EDGE:SOURce command selects the source for edge mode
triggering. This is the source that will be used for subsequent
:TRIGger:EDGE:SLOPe commands or queries.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:EDGE:SOURce?

The query returns the currently selected edge mode trigger source.

Returned Format [:TRIGger:EDGE:SOURce] {CHANnel<N> | <digital_channel> | AUX |
LINE | EXTernal}<NL>

EXTernal and AUXiliary are Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope models.

AUXiliary is only available in 4-channel Infiniium Oscilloscope models.

27-20

Glitch Trigger Mode and Commands

Use the Glitch Trigger Mode to find pulses in a waveform that are
narrower than the rest of the pulses in the waveform.

To look for pulses that are wider than the other pulses in your waveform,
you should use the pulse width trigger. Pulse width trigger is in the
Advanced trigger menu under Violation trigger.

The oscilloscope identifies a glitch trigger by looking for a pulse that is
narrower than other pulses in your waveform. You specify the width that
the pulse must be narrower than, and the pulse polarity (positive or
negative) that the oscilloscope should consider to be a glitch. For a
positive glitch, the oscilloscope triggers when the falling edge of a pulse
crosses the trigger level. For a negative glitch, the oscilloscope triggers
when the rising edge of the pulse crosses the trigger level.

Source Use this control to select the oscilloscope channel used to trigger the
oscilloscope.

Level Use the Level control to set the trigger level through which the glitch
must pass before the oscilloscope will trigger.

When setting the trigger level for your waveform, it is usually best to
choose a voltage value that is equal to the voltage value at the mid point
of your waveform. For example, if you have a waveform with a minimum
value of 0 (zero) volts and a maximum value of 5 volts, then 2.5 volts is
the best place to set your trigger level. The reason this is the best choice
is that there may be some ringing or noise at both the 0-volt and 5-volt
levels that can cause false triggers.

When you adjust the trigger level control, a horizontal dashed line with
a T on the right-hand side appears, showing you where the trigger level
is with respect to your waveform. After a period of time the dashed line
will disappear. To redisplay the line, adjust the trigger level control
again, or activate the Trigger dialog. A permanent icon with arrow
(either T, TL, or TH) is also displayed on the right side of the waveform
area, showing the trigger level.

Polarity Use the Positive control to look for positive glitches. Use the Negative
control to look for negative glitches.

27-21

Width Use the Width control to define the maximum pulse width that is
considered a glitch. The glitch width range is from 1.5 ns to 160 ms.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:GLITch commands, set the mode
by entering:

:TRIGger:MODE GLITch

This command sets the conditions for the glitch polarity, source, and
width trigger commands.

To query the oscilloscope for the trigger mode, enter:

:TRIGger:MODE?

You set up the :TRIGger:GLITch commands with the following
commands and queries:

• POLarity
• SOURce
• WIDTh

27-22

Trigger Commands
GLITch:POLarity

GLITch:POLarity

Command :TRIGger:GLITch:POLarity {POSitive|NEGative}

This command defines the polarity of the glitch as positive or negative. The
trigger source must be set using the :TRIGger:GLITch:SOURce command.

Query :TRIGger:GLITch:POLarity?

The query returns the currently selected glitch polarity.

Returned Format [:TRIGger:GLITch:POLarity] {POS|NEG}<NL>

27-23

Trigger Commands
GLITch:SOURce

GLITch:SOURce

Command :TRIGger:GLITch:SOURce {CHANnel<N> |
<digital_channel> | EXTernal}

This command sets the source for the glitch trigger mode.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:GLITch:SOURce?

The query returns the currently selected source for the glitch trigger mode.

Returned Format [:TRIGger:GLITch:SOURce] {CHANnel<N> | <digital_channel> |
EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-24

Trigger Commands
GLITch:WIDTh

GLITch:WIDTh

Command :TRIGger:GLITch:WIDTh <width>

This command sets the glitch width. The oscilloscope will trigger on a pulse
that has a width less than the specified width.

<width> A real number for the glitch width, ranging from 1.5 ns to 160 ms.

 Query :TRIGger:GLITch:WIDTh?

The query returns the currently specified glitch width.

Returned Format [:TRIGger:GLITch:WIDTh] <width><NL>

27-25

Advanced COMM Trigger Mode and Commands

Use the COMM Trigger Mode to find a serial pattern of bits in a waveform. The
COMM Trigger Mode is primarily used to find an isolated logically one bit in a
waveform for mask testing applications. The pattern is defined by the standards
used by the telecommunication and data communication industries. Mask
testing is used to verify a waveform meets industrial standards which
guarantees that equipment made by different manufacturers will work together.

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:ADVanced:COMMunications
commands, mask testing must be enabled at least one time. The
:MTESt:ENABle command enables or disables mask testing. Then you
can set the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE COMM

To query the oscilloscope for the advanced trigger mode, enter:

:TRIGger:ADVanced:MODE?

The :TRIGger:ADVanced:COMM commands define the Communications
Trigger Mode. As described in the following commands, you set up the
:TRIGger:ADVanced:COMM commands with the following commands
and queries.

• BWIDth
• ENCode
• LEVel
• PATTern
• POLarity
• SOURce

27-26

Trigger Commands
COMM:BWIDth

COMM:BWIDth

Command :TRIGger:ADVanced:COMM:BWIDth <bwidth_value>

The :TRIGger:ADVanced:COMM:BWIDth command is used to set the width of
a bit for your waveform. The bit width is usually defined in the mask standard
for your waveform.

<bwidth_value> A real number that represents the width of a bit.

Query :TRIGger:ADVanced:COMM:BWIDth?

The query returns the current bit width.

Returned Format [:TRIGger:ADVanced:COMM:BWIDth] <bwidth_value><NL>

27-27

Trigger Commands
COMM:ENCode

COMM:ENCode

Command :TRIGger:ADVanced:COMM:ENCode {RZ | NRZ}

This :TRIGger:ADVanced:COMM:ENCode command sets the type of waveform
encoding for your waveform. You should use NRZ for CMI type waveforms and
RZ for all other type of waveforms.

Query :TRIGger:ADVanced:COMM:ENCode?

The :TRIGger:ADVanced:COMM:ENCode? query returns the current value of
encoding

Returned Format [:TRIGger:ADVanced:COMM:ENCode] {RZ | NRZ}<NL>

27-28

Trigger Commands
COMM:LEVel

COMM:LEVel

Command :TRIGger:ADVanced:COMM:LEVel CHANnel<N>,<level>

The :TRIGger:ADVanced:COMM:LEVel command sets the voltage level
used to determine a logic 1 from a logic 0 for the communication pattern.

<N> An integer, 1-2, for two channel Infiniium Oscilloscope

An integer, 1-4, for all other Infiniium Oscilloscope models.

<level> A real number which is the logic level voltage.

Query :TRIGger:ADVanced:COMM:LEVel? CHANnel<N>

The :TRIGger:ADVanced:COMM:LEVel? query returns the current
level for the communication pattern.

Returned Format [:TRIGger:ADVanced:COMM:LEVel CHANnel<N>,]<level><NL>

27-29

Trigger Commands
COMM:PATTern

COMM:PATTern

Command :TRIGger:ADVanced:COMM:PATTern
<bit>[,<bit[,<bit[,<bit[,<bit[,<bit]]]]]

The :TRIGger:ADVanced:COMM:PATTern command sets the pattern used for
triggering the oscilloscope when in communication trigger mode. The pattern
can be up to 6 bits long. For NRZ type waveforms with positive polarity, there
must be at least one logic 0 to logic 1 transition in the pattern. For NRZ
waveforms with negative polarity there must be at least one logic 1 to logic 0
transition in the pattern. For RZ type waveforms the pattern must have at least
one logic 1 bit for positive polarity. For RZ type waveforms the pattern must
have at least one logic -1 bit for negative polarity.

<bit> A 1, -1, or 0.

Query :TRIGger:ADVanced:COMM:PATTern?

The :TRIGger:ADVanced:COMM:PATTern? query returns the current
communication trigger pattern.

Returned Format [:TRIGger:ADVanced:COMM:PATTern] <pattern><NL>

<pattern> A string of up to 6 characters.

27-30

Trigger Commands
COMM:POLarity

COMM:POLarity

Command :TRIGger:ADVanced:COMM:POLarity {POSitive |
NEGative}

The :TRIGger:ADVanced:COMM:POLarity command directly
controls the trigger slope used for communication trigger. When set to a positive
value, the rising edge of a pulse or waveform is used to trigger the oscilloscope.
When set to a negative value, the falling edge of a pulse or waveform is used.

The polarity setting is also used to check for valid patterns. If you are trying to
trigger on an isolated 1 pattern, you should set the polarity to positive. If you
are trying to trigger on an isolated -1 pattern, you should set the polarity to
negative.

Query :TRIGger:ADVanced:COMM:POLarity?

The :TRIGger:ADVanced:COMM:POLarity? query returns the
current setting for polarity.

Returned Format [:TRIGger:ADVanced:COMM:POLarity} {1|0}<NL>

27-31

Trigger Commands
COMM:SOURce

COMM:SOURce

Command :TRIGger:ADVanced:COMM:SOURce CHANnel<N>

The :TRIGger:ADVanced:COMM:SOURce command selects the channel used
for the communication trigger.

<N> An integer, 1-2, for two channel Infiniium Oscilloscope

An integer, 1-4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:COMM:SOURce?

The :TRIGger:ADVanced:COMM:SOURce? query returns the currently
selected communication trigger source.

Returned Format [:TRIGger:ADVanced:COMM:SOURce] CHANnel<N><NL>

27-32

Advanced Pattern Trigger Mode and Commands

Logic triggering is similar to the way that a logic analyzer captures data.
This mode is useful when you are looking for a particular set of ones and
zeros on a computer bus or control lines. You determine which channels
the oscilloscope uses to form the trigger pattern. Because you can set
the voltage level that determines a logic 1 or a logic 0, any logic family
that you are probing can be captured.

There are two types of logic triggering: Pattern and State. The difference
between pattern and state triggering modes is that state triggering uses
one of the oscilloscope channels as a clock.

Use pattern triggering to trigger the oscilloscope using more than one
channel as the trigger source. You can also use pattern triggering to
trigger on a pulse of a given width.

The Pattern Trigger Mode identifies a trigger condition by looking for a
specified pattern. A pattern is a logical combination of the channels.
Each channel can have a value of High (H), Low (L) or Don’t Care (X).
A value is considered a High when your waveform's voltage level is
greater than its trigger level, and a Low when the voltage level is less
than its trigger level. If a channel is set to Don’t Care, it is not used as
part of the pattern criteria.

One additional qualifying condition determines when the oscilloscope
triggers once the pattern is found. The :PATTern:CONDition command
has five possible ways to qualify the trigger:

Entered The oscilloscope will trigger on the edge of the source that makes the
pattern true.

Exited The oscilloscope will trigger on the edge of the source that makes the
pattern false.

Present > The oscilloscope will trigger when the pattern is present for greater than
the time that you specify. An additional parameter allows the
oscilloscope to trigger when the pattern goes away or when the time
expires.

Present < The oscilloscope will trigger when the pattern is present for less than
the time that you specify.

27-33

Range The oscilloscope will trigger on the edge of the waveform that makes the
pattern invalid as long as the pattern is present within the range of times
that you specify.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:ADVanced:PATTern commands,
set the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE PATTern

To query the oscilloscope for the advanced trigger mode, enter:

:TRIGger:ADVanced:MODE?

The :TRIGger:ADVanced:PATTern commands define the conditions for
the Pattern Trigger Mode. As described in the following commands, you
set up the :TRIGger:ADVanced:PATTern commands with the following
commands and queries:

• CONDition
• LOGic
• THReshold

27-34

Trigger Commands
PATTern:CONDition

PATTern:CONDition

Command :TRIGger:ADVanced:PATTern:CONDition {ENTered |
EXITed |
{GT,<time>[,PEXits|TIMeout]} |
{LT,<time>} |
{RANGe,<gt_time>,<lt_time>}}

This command describes the condition applied to the trigger pattern to actually
generate a trigger.

<gt_time> The minimum time (greater than time) for the trigger pattern, from 20 ns to
150 ms.

<lt_time> The maximum time (less than time) for the trigger pattern, from 30 ns to
160 ms.

<time> The time condition, in seconds, for the pattern trigger, from 1.5 ns to 160 ms.

When using the GT (Present >) parameter, the PEXits (Pattern Exits) or the
TIMeout parameter controls when the trigger is generated.

Query :TRIGger:ADVanced:PATTern:CONDition?

The query returns the currently defined trigger condition.

Returned Format [:TRIGger:ADVanced:PATTern:CONDition] {ENTered|EXITed |
{GT,<time>[,PEXits|TIMeout]} | {LT,<time>} | {RANGe,<gt_time>,
<lt_time>}}<NL>

27-35

Trigger Commands
PATTern:LOGic

PATTern:LOGic

Command :TRIGger:ADVanced:PATTern:LOGic {{CHANnel<N> |
<channel_list> | <digital_channel> |
EXTernal},{HIGH|LOW|DONTcare|RISing|FALLing}}

This command defines the logic criteria for a selected channel.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<channel_list> The channel range is from 0 to 15 in the following format.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:ADVanced:PATTern:LOGic? {CHANnel<N> |
<channel_list> | <digital_channel> | EXTernal}

The query returns the current logic criteria for a selected channel.

Returned Format [:TRIGger:ADVanced:PATTern:LOGic {CHANnel<N> | <channel_list>
| <digital_channel> | EXTernal},]
{HIGH|LOW|DONTcare|RISing|FALLing}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

(@1,5,7,9) channels 1, 5, 7, and 9 are turned on.

(@1:15) channels 1 through 15 are turned on.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14 are turned on.

27-36

Trigger Commands
:PATTern:THReshold:LEVel

:PATTern:THReshold:LEVel

Command :TRIGger:ADVanced:PATTern:THReshold:LEVel
{CHANnel<N> | EXTernal},<level>

The :TRIGger:ADVanced:PATTern:THReshold:LEVel command specifies the
trigger level on the specified channel for the trigger source. Only one trigger
level is stored in the oscilloscope for each channel. This level applies to the
channel throughout the trigger dialogs (Edge, Glitch, and Advanced). This level
also applies to all the High Threshold (HTHReshold) values in the Advanced
Violation menus.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the trigger level on the specified channel, External Trigger,
or Auxilliary Trigger Input.

Query :TRIGger:ADVanced:PATTern:THReshold:LEVel?
{CHANnel<N> | EXTernal}

The query returns the specified channel’s trigger level.

Returned Format [:TRIGger:ADVanced:PATTern:THReshold:LEVel {CHANnel<N> |
EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-37

Trigger Commands
:PATTern:THReshold:POD<N>

:PATTern:THReshold:POD<N>

Command :TRIGger:ADVanced:PATTern:THReshold:POD<N> {CMOS50
| CMOS30 | CMOS25 | ECL | PECL | TTL | <value>}

The TRIGger:ADVanced:PATTern:THReshold:POD<N> command sets the
logic threshold value for the selected pod. POD1 is digital channels D0 through
D7 and POD2 is digital channels D8 through D15. The threshold is used for
triggering purposes and for displaying the digital data as high (above the
threshold) or low (below the threshold). The voltage values for the predefined
thresholds are:

CMOS50=2.5 V

CMOS30=1.65 V

CMOS25=1.25 V

ECL=-1.3 V

PECL=3.7 V

TTL=1.4 V

<N> An integer, 1 - 2.

<value> A real number representing the voltage value which distinguishes a 1 logic level
from a 0 logic level. Waveform voltages greater than the threshold are 1 logic
levels while waveform vlotages less than the threshold are 0 logic levels.

Query :TRIGger:ADVanced:PATTern:THREShold:POD<N>?

The :TRIGger:ADVanced:PATTern:THReshold:POD<N>? query returns the
threshold value for the specified pod.

Return format [:TRIGger:ADVanged:PATTern:THReshold:POD<N>] {CMOS50 | CMOS30 |
CMOS25 | ECL | PECL | TTL | <value>}<NL>

This command is only valid for the MSO oscilloscopes.

27-38

Advanced State Trigger Mode and Commands

Logic triggering is similar to the way that a logic analyzer captures data.
This mode is useful when you are looking for a particular set of ones and
zeros on a computer bus or control lines. You determine which channels
the oscilloscope uses to form the trigger pattern. Because you can set
the voltage level that determines a logic 1 or a logic 0, any logic family
that you are probing can be captured.

There are two types of logic triggering: Pattern and State. The difference
between pattern and state triggering modes is that state triggering uses
one of the oscilloscope channels as a clock.

Use state triggering when you want the oscilloscope to use several
channels as the trigger source, with one of the channels being used as a
clock waveform.

The State trigger identifies a trigger condition by looking for a clock edge
on one channel and a pattern on the remaining channels. A pattern is a
logical combination of the remaining channels. Each channel can have
a value of High (H), Low (L) or Don’t Care (X). A value is considered a
High when your waveform's voltage level is greater than the trigger level
and a Low when the voltage level is less than the trigger level. If a channel
is set to Don’t Care, it is not used as part of the pattern criteria. You can
select the clock edge as either rising or falling.

The logic type control determines whether or not the oscilloscope will
trigger when the specified pattern is found on a clock edge. When AND
is selected, the oscilloscope will trigger on a clock edge when input
waveforms match the specified pattern. When NAND is selected, the
oscilloscope will trigger when the input waveforms are different from the
specified pattern and a clock edge occurs.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

27-39

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:ADVanced:STATe commands, set
the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE STATe

To query the oscilloscope for the advanced trigger mode, enter:

:TRIGger:ADVanced:MODE?

The :TRIGger:ADVanced:STATe commands define the conditions for
the State Trigger Mode. As described in the following commands, you
set up the :TRIGger:ADVanced:STATe commands with the following
commands and queries:

• CLOCk
• LOGic
• LTYPe
• SLOPe
• THReshold

27-40

Trigger Commands
STATe:CLOCk

STATe:CLOCk

Command :TRIGger:ADVanced:STATe:CLOCk {CHANnel<N> |
EXTernal | DONTcare | <digital_channel>}

This command selects the source for the clock waveform in the State Trigger
Mode.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:ADVanced:STATe:CLOCk?

The query returns the currently selected clock source.

Returned Format [:TRIGger:ADVanced:STATe:CLOCk] {CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-41

Trigger Commands
STATe:LOGic

STATe:LOGic

Command :TRIGger:ADVanced:STATe:LOGic {{CHANnel<N> |
<channel_list> | <digital_channel> |
EXTernal},{LOW|HIGH|DONTcare|RISing|
FALLing}}

This command defines the logic state of the specified source for the state
pattern. The command produces a settings conflict on a channel that has been
defined as the clock.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<channel_list> The channel range is from 0 to 15 in the following format.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:ADVanced:STATe:LOGic? {CHANnel<N> |
<channel_list> | <digital_channel> | EXTernal}

The query returns the logic state definition for the specified source.

<N> N is the channel number, an integer in the range of 1 - 4.

Returned Format [:TRIGger:ADVanced:STATe:LOGic
{CHANnel<N>|<channel_list>|<digital_channel>|EXTernal},]
{LOW|HIGH|DONTcare|RISing|FALLing}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

(@1,5,7,9) channels 1, 5, 7, and 9 are turned on.

(@1:15) channels 1 through 15 are turned on.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14 are turned on.

27-42

Trigger Commands
STATe:LTYPe

STATe:LTYPe

Command :TRIGger:ADVanced:STATe:LTYPe {AND|NAND}

This command defines the state trigger logic type. If the logic type is set to
AND, then a trigger is generated on the edge of the clock when the input
waveforms match the pattern specified by the
:TRIGger:ADVanced:STATe:LOGic command. If the logic type is set to NAND,
then a trigger is generated on the edge of the clock when the input waveforms
do not match the specified pattern.

Query :TRIGger:ADVanced:STATe:LTYPe?

The query returns the currently specified state trigger logic type.

Returned Format [:TRIGger:ADVanced:STATe:LTYPe] {AND|NAND}<NL>

27-43

Trigger Commands
STATe:SLOPe

STATe:SLOPe

Command :TRIGger:ADVanced:STATe:SLOPe {POSitive|NEGative}

This command specifies the edge of the clock that is used to generate a trigger.
The waveform source used for the clock is selected by using the
:TRIGger:ADVanced:STATe:CLOCk command.

Query :TRIGger:ADVanced:STATe:SLOPe?

The query returns the currently defined slope for the clock in State Trigger
Mode.

Returned Format [:TRIGger:ADVanced:STATe:SLOPe] {POSitive|NEGative}<NL>

27-44

Trigger Commands
:STATe:THReshold:LEVel

:STATe:THReshold:LEVel

Command :TRIGger:ADVanced:STATe:THReshold:LEVel
{CHANnel<N> | EXTernal},<level>

The :TRIGger:ADVanced:STATe:THReshold:LEVel command specifies the
trigger level on the specified channel for the trigger source. Only one trigger
level is stored in the oscilloscope for each channel. This level applies to the
channel throughout the trigger dialogs (Edge, Glitch, and Advanced). This level
also applies to all the High Threshold (HTHReshold) values in the Advanced
Violation menus.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the trigger level on the specified channel, External Trigger,
or Auxilliary Trigger Input.

Query :TRIGger:ADVanced:STATe:THReshold:LEVel?
{CHANnel<N> | EXTernal}

The query returns the specified channel’s trigger level.

Returned Format [:TRIGger:ADVanced:STATe:THReshold:LEVel {CHANnel<N> |
EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-45

Advanced Delay By Event Mode and Commands

You can set the delay mode to delay by events or time. Use Delay By
Event mode to view pulses in your waveform that occur a number of
events after a specified waveform edge. Infiniium Oscilloscopes identify
a trigger by arming on the edge you specify, counting a number of events,
then triggering on the specified edge.

Arm On Use Arm On to set the source, level, and slope for arming the trigger
circuitry. When setting the arm level for your waveform, it is usually best
to choose a voltage value that is equal to the voltage value at the mid
point of your waveform. For example, if you have a waveform with a
minimum value of 0 (zero) volts and a maximum value of 5 volts, then
2.5 volts is the best place to set your arm level. The reason this is the
best choice is that there may be some ringing or noise at both the 0-volt
and 5-volt levels that can cause false triggers.

When you adjust the arm level control, a horizontal dashed line with a T
on the right-hand side appears showing you where the arm level is with
respect to your waveform. After a period of time the dashed line will
disappear. To redisplay the line, adjust the arm level control again, or
activate the Trigger dialog.

Delay By Event Use Delay By Event to set the source, level, and edge to define an event.
When setting the event level for your waveform, it is usually best to
choose a voltage value that is equal to the voltage value at the mid point
of your waveform. For example, if you have a waveform with a minimum
value of 0 (zero) volts and a maximum value of 5 volts, then 2.5 volts is
the best place to set your event level. The reason this is the best choice
is that there may be some ringing or noise at both the 0-volt and 5-volt
levels that can cause false triggers.

Event Use Event to set the number of events (edges) that must occur after the
oscilloscope is armed until it starts to look for the trigger edge.

Trigger On Use Trigger On to set the trigger source and trigger slope required to
trigger the oscilloscope. Each source can have only one level, so if you
are arming and triggering on the same source, only one level is used.

27-46

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:ADVanced:DELay commands, set
the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE DELay

The ADVanced DELay commands define the conditions for the Delay
Trigger Mode. The Delay By Events Mode lets you view pulses in your
waveform that occur a number of events after a specified waveform edge.
After entering the commands above, to select Delay By Events Mode,
enter:

:TRIGger:ADVanced:DELay:MODE EDLY

Then you can use the Event Delay (EDLY) commands and queries for
ARM, EVENt, and TRIGger on the following pages.

To query the oscilloscope for the advanced trigger mode or the advanced
trigger delay mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:DELay:MODE?

27-47

Trigger Commands
EDLY:ARM:SOURce

EDLY:ARM:SOURce

Command :TRIGger:ADVanced:DELay:EDLY:ARM:SOURce {CHANnel<N>
| <digital_channel> | EXTernal}

This command sets the Arm On source for arming the trigger circuitry when
the oscilloscope is in the Delay By Event trigger mode.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:ADVanced:DELay:EDLY:ARM:SOURce?

The query returns the currently defined Arm On source for the Delay By Event
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:ARM:SOURce] {CHANnel<N> |
<digital_channel> | EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-48

Trigger Commands
EDLY:ARM:SLOPe

EDLY:ARM:SLOPe

Command :TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe
{NEGative|POSitive}

This command sets a positive or negative slope for arming the trigger circuitry
when the oscilloscope is in the Delay By Event trigger mode.

Query :TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe?

The query returns the currently defined slope for the Delay By Event trigger
mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe]
{NEGative|POSitive}<NL>

27-49

Trigger Commands
EDLY:EVENt:DELay

EDLY:EVENt:DELay

Command :TRIGger:ADVanced:DELay:EDLY:EVENt:DELay
<edge_number>

This command sets the event count for a Delay By Event trigger event.

<edge_num> An integer from 0 to 16,000,000 specifying the number of edges to delay.

Query :TRIGger:ADVanced:DELay:EDLY:EVENt:DELay?

The query returns the currently defined number of events to delay before
triggering on the next Trigger On condition in the Delay By Event trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:EVENt:DELay] <edge_number><NL>

27-50

Trigger Commands
EDLY:EVENt:SOURce

EDLY:EVENt:SOURce

Command :TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce
{CHANnel<N> | <digital_channel> | EXTernal}

This command sets the Event source for a Delay By Event trigger event.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce?

The query returns the currently defined Event source in the Delay By Event
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce] {CHANnel<N> |
<digital_channel> | EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-51

Trigger Commands
EDLY:EVENt:SLOPe

EDLY:EVENt:SLOPe

Command :TRIGger:ADVanced:DELay:EDLY:EVENt:SLOPe
{NEGative|POSitive}

This command sets the trigger slope for the Delay By Event trigger event.

Query :TRIGger:ADVanced:DELay:EDLY:EVENt:SLOPe?

The query returns the currently defined slope for an event in the Delay By Event
trigger mode.

Returned Format [:TRIGger:ADVanced:EDLY:EVENt:SLOPe] {NEGative|POSitive}<NL>

27-52

Trigger Commands
EDLY:TRIGger:SOURce

EDLY:TRIGger:SOURce

Command :TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce
{CHANnel<N> | <digital_channel> | EXTernal}

This command sets the Trigger On source for a Delay By Event trigger event.

 <N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce?

The query returns the currently defined Trigger On source for the event in the
Delay By Event trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce] {CHANnel<N> |
<digital_channel> | EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-53

Trigger Commands
EDLY:TRIGger:SLOPe

EDLY:TRIGger:SLOPe

Command :TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe
{NEGative|POSitive}

This command sets the trigger slope for the Delay By Event trigger event.

Query :TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe?

The query returns the currently defined slope for an event in the Delay By Event
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe]
{NEGative|POSitive}<NL>

27-54

Advanced Delay By Time Mode and Commands

You can set the delay mode to delay by events or time. Use Delay By
Time mode to view pulses in your waveform that occur a long time after
a specified waveform edge. The Delay by Time identifies a trigger
condition by arming on the edge you specify, waiting a specified amount
of time, then triggering on a specified edge. This can be thought of as
two-edge triggering, where the two edges are separated by a selectable
amount of time.

It is also possible to use the Horizontal Position control to view a pulse
some period of time after the trigger has occurred. The problem with
this method is that the further the pulse is from the trigger, the greater
the possibility that jitter will make it difficult to view. Delay by Time
eliminates this problem by triggering on the edge of interest.

Arm On Use Arm On to set the source, level, and slope for the arming condition.
When setting the arm level for your waveform, it is usually best to choose
a voltage value that is equal to the voltage value at the mid point of your
waveform. For example, if you have a waveform with a minimum value
of 0 (zero) volts and a maximum value of 5 volts, then 2.5 volts is the
best place to set your arm level. The reason this is the best choice is that
there may be some ringing or noise at both the 0-volt and 5-volt levels
that can cause false triggers.

When you adjust the arm level control, a horizontal dashed line with a T
on the right-hand side appears showing you where the arm level is with
respect to your waveform. After a period of time the dashed line will
disappear. To redisplay the line, adjust the arm level control again, or
activate the Trigger dialog.

Delay By Time Use Delay By Time to set the amount of delay time from when the
oscilloscope is armed until it starts to look for the trigger edge. The range
is from 30 ns to 160 ms.

Trigger On Use Trigger On to set the source and slope required to trigger the
oscilloscope. Trigger On Level is slaved to Arm On Level.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

27-55

Set the Mode Before Executing Commands

Before you can execute the :TRIGger:ADVanced:DELay commands, set
the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE DELay

The ADVanced DELay commands define the conditions for the Delay
Trigger Mode. The Delay By Time Mode lets you view pulses in your
waveform that occur a specified time after a specified waveform edge.
After entering the commands above, to select Delay By Time Mode,
enter:

:TRIGger:ADVanced:DELay:MODE TDLY

Then you can use the Time Delay (TDLY) commands and queries for
ARM, DELay, and TRIGger on the following pages.

To query the oscilloscope for the advanced trigger mode or the advanced
trigger delay mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:DELay:MODE?

27-56

Trigger Commands
TDLY:ARM:SOURce

TDLY:ARM:SOURce

Command :TRIGger:ADVanced:DELay:TDLY:ARM:SOURce {CHANnel<N>
| <digital_channel> | EXTernal}

This command sets the Arm On source for arming the trigger circuitry when
the oscilloscope is in the Delay By Time trigger mode.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:ADVanced:DELay:TDLY:ARM:SOURce?

The query returns the currently defined channel source for the Delay By Time
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:ARM:SOURce] {CHANnel<N> |
<digital_channel> | EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-57

Trigger Commands
TDLY:ARM:SLOPe

TDLY:ARM:SLOPe

Command :TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe
{NEGative|POSitive}

This command sets a positive or negative slope for arming the trigger circuitry
when the oscilloscope is in the Delay By Time trigger mode.

Query :TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe?

The query returns the currently defined slope for the Delay By Time trigger
mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe]
{NEGative|POSitive}<NL>

27-58

Trigger Commands
TDLY:DELay

TDLY:DELay

Command :TRIGger:ADVanced:DELay:TDLY:DELay <delay>

This command sets the delay for a Delay By Time trigger event.

<delay> Time, in seconds, set for the delay trigger, from 30 ns to 160 ms.

Query :TRIGger:ADVanced:DELay:TDLY:DELay?

The query returns the currently defined time delay before triggering on the next
Trigger On condition in the Delay By Time trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:DELay] <delay><NL>

27-59

Trigger Commands
TDLY:TRIGger:SOURce

TDLY:TRIGger:SOURce

Command :TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce
{CHANnel<N> | <digital_channel> | EXTernal}

This command sets the Trigger On source for a Delay By Time trigger event.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce?

The query returns the currently defined Trigger On source in the Delay By Time
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce] {CHANnel<N> |
<digital_channel> | EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-60

Trigger Commands
TDLY:TRIGger:SLOPe

TDLY:TRIGger:SLOPe

Command :TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe
{NEGative|POSitive}

This command sets the trigger slope for the Delay By Time trigger event.

Query :TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe?

The query returns the currently defined slope for an event in the Delay By Time
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe]
{NEGative|POSitive}<NL>

27-61

Advanced Standard TV Mode and Commands

Use TV trigger mode to trigger on one of the standard television
waveforms. Also, use this mode to trigger on a custom television
waveform that you define, as described in the next section.

There are four types of television (TV) trigger modes: 525 (NTSC or
PAL-M), 625 (PAL), and User Defined. The 525 and 625 are predefined
video standards used throughout the world. The User Defined TV
trigger, described in the next section, lets you trigger on nonstandard
TV waveforms.

525 and 625 TV Trigger Modes

Source Use the Source control to select one of the oscilloscope channels as the
trigger source.

Level Use to set the trigger voltage level. When setting the trigger level for
your waveform, it is usually best to choose a voltage value that is just
below the bottom of burst.

When you adjust the trigger level control, a horizontal dashed line with
a T on the right-hand side appears showing you where the trigger level
is with respect to your waveform. After a period of time the dashed line
will disappear. To redisplay the line, adjust the trigger level control
again, or activate the Trigger dialog.

Positive or
Negative Sync

Use the Positive and Negative Sync controls to select either a positive
sync pulse or a negative sync pulse as the trigger.

Field Use the Field control to select video field 1 or video field 2 as the trigger.

Line Use the Line control to select the horizontal line you want to view within
the chosen video field.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

27-62

STV Commands

These commands set the conditions for the TV trigger mode using
standard, predefined parameters (in STV mode), or user-defined
parameters (in UDTV mode). The STV commands are used for
triggering on television waveforms, and let you select one of the TV
waveform frames and one of the lines within that frame.

Set the Mode Before Executing Commands

Before executing the :TRIGger:ADVanced:STV commands, set the mode
by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE TV and

:TRIGger:ADVanced:TV:MODE L525 or
:TRIGger:ADVanced:TV:MODE L625

To query the oscilloscope for the advanced trigger mode or the advanced
trigger TV mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:TV:MODE?

You set up the :TRIGger:ADVanced:TV:STV commands with the
following commands and queries:

• FIELd
• LINE
• SOURce
• SPOLarity

27-63

Trigger Commands
STV:FIELd

STV:FIELd

Command :TRIGger:ADVanced:TV:STV:FIELd {1|2}

This command is available in standard TV trigger modes L525 and L626.

The :TRIGger:ADVanced:TV:STV:FIELd command selects which TV waveform
field is used during standard TV trigger mode. The line within the selected field
is specified using the :TRIGger:ADVanced:TV:STV:LINE <line_number>
command.

Query :TRIGger:ADVanced:TV:STV:FIELd?

The query returns the current television waveform field.

Returned Format [:TRIGger:ADVanced:TV:STV:FIELd] {1|2}<NL>

27-64

Trigger Commands
STV:LINE

STV:LINE

Command :TRIGger:ADVanced:TV:STV:LINE <line_number>

This command is available in standard TV trigger modes L525 and L626.

The :TRIGger:ADVanced:TV:STV:LINE command selects the horizontal line
that the instrument will trigger on. Allowable line_number entry depends on
the :TRIGger:ADVanced:TV:STV:FIELd selected. Once the vertical sync pulse
of the selected field is received, the trigger is delayed by the number of lines
specified.

<line_number> Horizontal line number. Allowable values range from 1 to 625, depending on
:TRIGger:ADVanced:TV:STV:FIELd settings as shown below.

Query :TRIGger:ADVanced:TV:STV:LINE?

The query returns the current line number.

Returned Format [:TRIGger:ADVanced:TV:STV:LINE] <line_number><NL>

STV Modes
525 625

Field 1 1 to 263 1 to 313
Field 2 1 to 262 314 to 625

27-65

Trigger Commands
STV:SOURce

STV:SOURce

Command :TRIGger:ADVanced:TV:STV:SOURce
{CHANnel<N>|EXTernal}

This command is available in standard TV trigger modes L525 and L626.

The :TRIGger:ADVanced:TV:STV:SOURce command selects the source for
standard TV mode triggering. This is the source that will be used for subsequent
:TRIGger:ADVanced:TV:STV commands and queries.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:TV:STV:SOURce?

The query returns the currently selected standard TV trigger mode source.

Returned Format [:TRIGger:ADVanced:TV:STV:SOURce] {CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-66

Trigger Commands
STV:SPOLarity

STV:SPOLarity

Command :TRIGger:ADVanced:TV:STV:SPOLarity
{NEGative|POSitive}

This command is available in standard TV trigger modes L525 and L626.

The :TRIGger:ADVanced:TV:STV:SPOLarity (Sync POLarity) command
specifies the vertical sync pulse polarity for the selected field used during
standard TV mode triggering.

Query :TRIGger:ADVanced:TV:STV:SPOLarity?

The query returns the currently selected sync pulse polarity.

Returned Format [:TRIGger:ADVanced:TV:STV:SPOLarity] {NEGative|POSitive}<NL>

27-67

Advanced User Defined TV Mode and Commands

Use TV trigger mode to trigger on one of the standard television
waveforms, as described in the previous section, and to trigger on a
custom television waveform that you define. The User Defined TV
trigger lets you trigger on nonstandard TV waveforms.

User Defined TV Trigger

Source Use the Source control to select one of the oscilloscope channels as the
trigger source.

Level Use the Level control to set the trigger voltage level.

When setting the trigger level for your waveform, it is usually best to
choose a voltage value that is just below the bottom of burst.

When you adjust the trigger level control, a horizontal dashed line with
a T on the right-hand side appears showing you where the trigger level
is with respect to your waveform. After a period of time the dashed line
will disappear. To redisplay the line, adjust the trigger level control
again, or activate the Trigger dialog. A permanent icon with arrow
(either T, TL, or TH) is also displayed on the right side of the waveform
area, showing the trigger level.

Pos or Neg Use the Pos and Neg controls to select either a positive pulse or a
negative pulse to arm the trigger circuitry.

Time > Use the Time > control to set the minimum time that the pulse must be
present to be considered a valid sync pulse.

Edge Number Use the Edge Number control to select the number of edges you want
the oscilloscope to count before triggering.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

UDTV Commands

These commands set the conditions for the TV trigger mode using user-
defined parameters. They are used for triggering on non-standard
television waveforms, and let you define the conditions that must be met
before a trigger occurs.

27-68

Set the Mode Before Executing Commands

Before executing the :TRIGger:ADVanced:TV:UDTV commands, set the
mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE TV and
:TRIGger:ADVanced:TV:MODE UDTV

To query the oscilloscope for the advanced trigger mode or the advanced
trigger TV mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:TV:MODE?

You set up the :TRIGger:ADVanced:TV:UDTV commands with the
following commands and queries:

• ENUMber
• PGTHan
• POLarity
• SOURce
When triggering for User Defined TV mode:

• Set the channel or trigger source for the trigger using:

:TRIGger:ADVanced:TV:UDTV:SOURce

• Set the conditions for arming the trigger using:

:TRIGger:ADVanced:TV:UDTV:PGTHan, and
:TRIGger:ADVanced:TV:UDTV:POLarity.

• Set the number of events to delay after the trigger is armed using:

:TRIGger:ADVanced:TV:UDTV:ENUMber

• Set the waveform edge that causes the trigger to occur after arming
and delay using:

:TRIGger:ADVanced:TV:UDTV:EDGE

27-69

Trigger Commands
UDTV:ENUMber

UDTV:ENUMber

Command :TRIGger:ADVanced:TV:UDTV:ENUMber <count>

The :TRIGger:ADVanced:TV:UDTV:ENUMber command specifies the number
of events (horizontal sync pulses) to delay after arming the trigger before
looking for the trigger event. Specify conditions for arming the trigger using:

TRIGger:ADVanced:TV:UDTV:PGTHan, and

TRIGger:ADVanced:TV:UDTV:POLarity.

<count> An integer for the number of events to delay. Allowable values range from 1 to
16,000,000.

Query :TRIGger:ADVanced:TV:UDTV:ENUMber?

The query returns the currently programmed count value.

Returned Format [:TRIGger:ADVanced:TV:UDTV:ENUMber] <count><NL>

27-70

Trigger Commands
UDTV:PGTHan

UDTV:PGTHan

Command :TRIGger:ADVanced:TV:UDTV:PGTHan <lower_limit>

The :TRIGger:ADVanced:TV:UDTV:PGTHan (Present Greater THan)
command specifies the minimum pulse width of the waveform used to arm the
trigger used during user-defined trigger mode.

<lower_limit> Minimum pulse width (time >), from 20 ns to 150 ms.

Query :TRIGger:ADVanced:TV:UDTV:PGTHan?

The query returns the currently selected minimum pulse width.

Returned Format [:TRIGger:ADVanced:TV:UDTV:PGTHan] <lower_limit><NL>

27-71

Trigger Commands
UDTV:POLarity

UDTV:POLarity

Command :TRIGger:ADVanced:TV:UDTV:POLarity
{NEGative|POSitive}

The :TRIGger:ADVanced:TV:UDTV:POLarity command specifies the polarity
for the sync pulse used to arm the trigger in the user-defined trigger mode.

Query :TRIGger:ADVanced:TV:UDTV:POLarity?

The query returns the currently selected UDTV sync pulse polarity.

Returned Format [:TRIGger:ADVanced:TV:UDTV:POLarity] {NEGative|POSitive}<NL>

27-72

Trigger Commands
UDTV:SOURce

UDTV:SOURce

Command :TRIGger:ADVanced:TV:UDTV:SOURce
{CHANnel<N>|EXTernal}

The :TRIGger:ADVanced:TV:UDTV:SOURce command selects the source for
user-defined TV mode triggering. This is the source that will be used for
subsequent :TRIGger:ADVanced:TV:UDTV commands and queries.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:TV:UDTV:SOURce?

The query returns the currently selected user-defined TV trigger mode source.

Returned Format [:TRIGger:ADVanced:TV:UDTV:SOURce] {CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-73

Advanced Trigger Violation Modes

Violation triggering helps you find conditions within your circuit that
violate the design rules. There are four types of violation triggering:
Pulse Width, Setup and Hold Time, and Transition.

PWIDth This mode lets you find pulses that are wider than the rest of the pulses
in your waveform. It also lets you find pulses that are narrower than the
rest of the pulses in the waveform.

SETup This mode lets you find violations of setup and hold times in your circuit.
Use this mode to select setup time triggering, hold time triggering, or
both setup and hold time triggering.

TRANsition This mode lets you find any edge in your waveform that violates a rise
time or fall time specification. The Infiniium oscilloscope can be set to
trigger on rise times or fall times that are too slow or too fast.

27-74

Trigger Commands
VIOLation:MODE

VIOLation:MODE

Command :TRIGger:ADVanced:VIOLation:MODE {PWIDth | SETup |
TRANsition}

After you have selected the advanced trigger mode with the commands
:TRIGger:MODE ADVanced and :TRIGger:ADVanced:MODE VIOLation,
the :TRIGger:ADVanced:VIOLation:MODE <violation_mode> command
specifies the mode for trigger violations. The <violation_mode> is either
PWIDth, SETup, or TRANsition.

Query :TRIGger:ADVanced:VIOLation:MODE?

The query returns the currently defined mode for trigger violations.

Returned Format [:TRIGger:ADVanced:VIOLation:MODE] {PWIDth | SETup |
TRANsition}<NL>

27-75

Pulse Width Violation Mode and Commands

Use Pulse Width Violation Mode to find pulses that are wider than the
rest of the pulses in your waveform. You can also use this mode to find
pulses that are narrower than the rest of the pulses in the waveform.

The oscilloscope identifies a pulse width trigger by looking for a pulse
that is either wider than or narrower than other pulses in your waveform.
You specify the pulse width and pulse polarity (positive or negative) that
the oscilloscope uses to determine a pulse width violation. For a positive
polarity pulse, the oscilloscope triggers when the falling edge of a pulse
crosses the trigger level. For a negative polarity pulse, the oscilloscope
triggers when the rising edge of a pulse crosses the trigger level.

When looking for narrower pulses, pulse width less than (Width <)
trigger is the same as glitch trigger.

Source Use Source to select the oscilloscope channel used to trigger the
oscilloscope.

Level Use the Level control to set the voltage level through which the pulse
must pass before the oscilloscope will trigger.

When setting the trigger level for your waveform, it is usually best to
choose a voltage value that is equal to the voltage value at the mid point
of your waveform. For example, if you have a waveform with a minimum
value of 0 (zero) volts and a maximum value of 5 volts, then 2.5 volts is
the best place to set your trigger level. The reason this is the best choice
is that there may be some ringing or noise at both the 0-volt and 5-volt
levels that can cause false triggers.

When you adjust the trigger level control, a horizontal dashed line with
a T on the right-hand side appears showing you where the trigger level
is with respect to your waveform. After a period of time the dashed line
will disappear. To redisplay the line, adjust the trigger level control
again, or activate the Trigger dialog. A permanent icon with arrow
(either T, TL, or TH) is also displayed on the right side of the waveform
area, showing the trigger level.

Polarity Use the Polarity control to specify positive or negative pulses.

Direction Use Direction to set whether a pulse must be wider (Width >) or
narrower (Width <) than the width value to trigger the oscilloscope.

27-76

Width Use the Width control to define how wide of a pulse will trigger the
oscilloscope. The glitch width range is from 1.5 ns to 160 ms.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands

Before executing the :TRIGger:ADVanced:VIOLation:PWIDth
commands, set the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE PWIDth

To query the oscilloscope for the advanced trigger violation mode, enter:

:TRIGger:ADVanced:VIOLation:MODE?

27-77

Trigger Commands
VIOLation:PWIDth:DIRection

VIOLation:PWIDth:DIRection

Command :TRIGger:ADVanced:VIOLation:PWIDth:DIRection
{GTHan|LTHan}

This command specifies whether a pulse must be wider or narrower than the
width value to trigger the oscilloscope.

Query :TRIGger:ADVanced:VIOLation:PWIDth:DIRection?

The query returns the currently defined direction for the pulse width trigger.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:DIRection]
{GTHan|LTHan}<NL>

27-78

Trigger Commands
VIOLation:PWIDth:POLarity

VIOLation:PWIDth:POLarity

Command :TRIGger:ADVanced:VIOLation:PWIDth:POLarity
{NEGative|POSitive}

This command specifies the pulse polarity that the oscilloscope uses to
determine a pulse width violation. For a negative polarity pulse, the oscilloscope
triggers when the rising edge of a pulse crosses the trigger level. For a positive
polarity pulse, the oscilloscope triggers when the falling edge of a pulse crosses
the trigger level.

Query :TRIGger:ADVanced:VIOLation:PWIDth:POLarity?

The query returns the currently defined polarity for the pulse width trigger.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:POLarity]
{NEGative|POSitive}<NL>

27-79

Trigger Commands
VIOLation:PWIDth:SOURce

VIOLation:PWIDth:SOURce

Command :TRIGger:ADVanced:VIOLation:PWIDth:SOURce
{CHANnel<N> | <digital_channel> | EXTernal}

This command specifies the channel source used to trigger the oscilloscope with
the pulse width trigger.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the voltage through which the pulse must pass before the
oscilloscope will trigger.

<digital
_channel>

The digital channels are only available on the MSO oscilloscopes and can be

DIGital0 through DIGital15

Query :TRIGger:ADVanced:VIOLation:PWIDth:SOURce?

The query returns the currently defined channel source for the pulse width
trigger.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:SOURce]
{CHANnel<N>|<digital_channel>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-80

Trigger Commands
VIOLation:PWIDth:WIDTh

VIOLation:PWIDth:WIDTh

Command :TRIGger:ADVanced:VIOLation:PWIDth:WIDTh <width>

This command specifies how wide a pulse must be to trigger the oscilloscope.

<width> Pulse width, which can range from 1.5 ns to 160 ms.

Query :TRIGger:ADVanced:VIOLation:PWIDth:WIDTh?

The query returns the currently defined width for the pulse.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:WIDTh] <width><NL>

27-81

Setup Violation Mode and Commands

Use Setup Violation Mode to find violations of setup and hold times in
your circuit.

Mode

Use MODE to select Setup, Hold, or both Setup and Hold time triggering.

You can have the oscilloscope trigger on violations of setup time, hold
time, or both setup and hold time. To use Setup Violation Type, the
oscilloscope needs a clock waveform, used as the reference, and a data
waveform for the trigger source.

Setup Time Mode When using the Setup Time Mode, a time window is defined where the
right edge is the clock edge and the left edge is the selected time before
the clock edge. The waveform must stay outside of the thresholds during
this time window. If the waveform crosses a threshold within the time
window, a violation event occurs and the oscilloscope triggers.

Hold Time Mode When using Hold Time Mode, the waveform must not cross the threshold
voltages after the specified clock edge for at least the hold time you have
selected. Otherwise, a violation event occurs and the oscilloscope
triggers.

Setup and Hold
Time Mode

When using the Setup and Hold Time Mode, if the waveform violates
either a setup time or hold time, the oscilloscope triggers.

Data Source

Use the data source (DSOurce) command to select the channel used as
the data, the low-level data threshold, and the high-level data threshold.
For data to be considered valid, it must be below the lower threshold or
above the upper threshold during the time of interest.

DSOurce Use DSOurce to select the channel you want to use for the data source.

Low Threshold Use the low threshold (LTHReshold) to set the minimum threshold for
your data. Data is valid below this threshold.

High Threshold Use the high threshold (HTHReshold) to set the maximum threshold for
your data. Data is valid above this threshold.

27-82

Clock Source

Use the clock source (CSOurce) command to select the clock source,
trigger level, and edge polarity for your clock. Before the trigger circuitry
looks for a setup or hold time violation, the clock must pass through the
voltage level you have set.

CSOurce Use CSOurce to select the channel you want to use for the clock source.

LEVel Use LEVel to set voltage level on the clock waveform as given in the data
book for your logic family.

RISing or
FALLing

Use RISing or FALLing to select the edge of the clock the oscilloscope
uses as a reference for the setup or hold time violation trigger.

Time

Setup Time Use SETup to set the amount of setup time used to test for a violation.
The setup time is the amount of time that the data has to be stable and
valid prior to a clock edge. The minimum is 1.5 ns; the maximum is 20 ns.

Hold Time Use HOLD to set the amount of hold time used to test for a violation.
The hold time is the amount of time that the data has to be stable and
valid after a clock edge. The minimum is 1.5 ns; the maximum is 20 ns.

Setup and Hold Use SHOLd (Setup and Hold) to set the amount of setup and hold time
used to test for a violation.

The setup time is the amount of time that the data has to be stable and
valid prior to a clock edge. The hold time is the amount of time that the
data waveform has to be stable and valid after a clock edge.

The setup time plus hold time equals 20 ns maximum. So, if the setup
time is 1.5 ns, the maximum hold time is 18.5 ns.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

27-83

Set the Mode Before Executing Commands

Before executing the :TRIGger:ADVanced:VIOLation:SETup
commands, set the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE SETup and
:TRIGger:ADVanced:VIOLation:SETup:MODE <setup_mode>

Where <setup_mode> includes SETup, HOLD, and SHOLd.

To query the oscilloscope for the advanced trigger violation setup mode,
enter:

:TRIGger:ADVanced:VIOLation:SETup:MODE?

27-84

Trigger Commands
VIOLation:SETup:MODE

VIOLation:SETup:MODE

Command :TRIGger:ADVanced:VIOLation:SETup:MODE
{SETup|HOLD|SHOLd}

SETup When using the setup time mode, a time window is defined where the right edge
is the clock edge and the left edge is the selected time before the clock edge.
The waveform must stay outside of the trigger level thresholds during this time
window. If the waveform crosses a threshold during this time window, a
violation event occurs and the oscilloscope triggers.

HOLD When using the hold time mode, the waveform must not cross the threshold
voltages after the specified clock edge for at least the hold time you have
selected. Otherwise, a violation event occurs and the oscilloscope triggers.

SHOLd When using the setup and hold time mode, if the waveform violates either a
setup time or hold time, the oscilloscope triggers. The total time allowed for
the sum of setup time plus hold time is 20 ns maximum.

Query :TRIGger:ADVanced:VIOLation:SETup:MODE?

The query returns the currently selected trigger setup violation mode.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:MODE]
{SETup|HOLD|SHOLd}<NL>

27-85

Trigger Commands
VIOLation:SETup:SETup:CSOurce

VIOLation:SETup:SETup:CSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce
{CHANnel<N>|EXTernal}

This command specifies the clock source for the clock used for the trigger setup
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce?

The query returns the currently defined clock source for the trigger setup
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce]
{CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-86

Trigger Commands
VIOLation:SETup:SETup:CSOurce:LEVel

VIOLation:SETup:SETup:CSOurce:LEVel

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
LEVel {{CHANnel<N>|EXTernal},<level>}

This command specifies the level for the clock source used for the trigger setup
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the voltage level for the trigger setup violation clock
waveform, and depends on the type of circuitry logic you are using.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
LEVel? {CHANnel<N>|EXTernal}

The query returns the specified clock source level for the trigger setup violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:LEVel
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-87

Trigger Commands
VIOLation:SETup:SETup:CSOurce:EDGE

VIOLation:SETup:SETup:CSOurce:EDGE

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
EDGE {RISing|FALLing}

This command specifies the edge for the clock source used for the trigger setup
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger setup
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:EDGE]
{RISing|FALLing}<NL>

27-88

Trigger Commands
VIOLation:SETup:SETup:DSOurce

VIOLation:SETup:SETup:DSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce
{CHANnel<N>|EXTernal}

The data source commands specify the data source for the trigger setup
violation.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce?

The query returns the currently defined data source for the trigger setup
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce]
{CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-89

Trigger Commands
VIOLation:SETup:SETup:DSOurce:HTHReshold

VIOLation:SETup:SETup:DSOurce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
HTHReshold {{CHANnel<N>|EXTernal},<level>}

This command specifies the data source for the trigger setup violation, and the
high-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data
threshold.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the data threshold level for the trigger setup violation, and is
used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
HTHReshold? {CHANnel<N>|EXTernal}

The query returns the specified data source for the trigger setup violation, and
the high data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:HTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-90

Trigger Commands
VIOLation:SETup:SETup:DSOurce:LTHReshold

VIOLation:SETup:SETup:DSOurce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
LTHReshold {{CHANnel<N>|EXTernal},<level>}

This command specifies the data source for the trigger setup violation, and the
low-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data
threshold.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the data threshold level for the trigger setup violation, and is
used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
LTHReshold? {CHANnel<N>|EXTernal}

The query returns the specified data source for the trigger setup violation, and
the low data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:LTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-91

Trigger Commands
VIOLation:SETup:SETup:TIME

VIOLation:SETup:SETup:TIME

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:TIME <time>

This command specifies the amount of setup time used to test for a trigger
violation. The setup time is the amount of time that the data must be stable
and valid prior to a clock edge.

<time> Setup time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:TIME?

The query returns the currently defined setup time for the trigger violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:TIME] <time><NL>

27-92

Trigger Commands
VIOLation:SETup:HOLD:CSOurce

VIOLation:SETup:HOLD:CSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce
{CHANnel<N>|EXTernal}

This command specifies the clock source for the clock used for the trigger hold
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce?

The query returns the currently defined clock source for the trigger hold
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce]
{CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-93

Trigger Commands
VIOLation:SETup:HOLD:CSOurce:LEVel

VIOLation:SETup:HOLD:CSOurce:LEVel

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
LEVel {{CHANnel<N>|EXTernal},<level>}

This command specifies the level for the clock source used for the trigger hold
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other nfiniium Oscilloscope models.

<level> A real number for the voltage level for the trigger hold violation clock waveform,
and depends on the type of circuitry logic you are using.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
LEVel? {CHANnel<N>|EXTernal}

The query returns the specified clock source level for the trigger hold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:LEVel
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-94

Trigger Commands
VIOLation:SETup:HOLD:CSOurce:EDGE

VIOLation:SETup:HOLD:CSOurce:EDGE

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
EDGE {RISing|FALLing}

This command specifies the edge for the clock source used for the trigger hold
violation. The clock must pass through the voltage level you have set before
the trigger circuitry looks for a setup or hold time violation.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger hold
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:EDGE]
{RISing|FALLing}<NL>

27-95

Trigger Commands
VIOLation:SETup:HOLD:DSOurce

VIOLation:SETup:HOLD:DSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce
{CHANnel<N>|EXTernal}

The data source commands specify the data source for the trigger hold violation.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce?

The query returns the currently defined data source for the trigger hold
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce]
{CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-96

Trigger Commands
VIOLation:SETup:HOLD:DSOurce:HTHReshold

VIOLation:SETup:HOLD:DSOurce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
HTHReshold {{CHANnel<N>|EXTernal},<level>}

This command specifies the data source for the trigger hold violation, and the
high-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data
threshold.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the data threshold level for the trigger hold violation, and is
used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
HTHReshold? {CHANnel<N>|EXTernal}

The query returns the specified data source for the trigger hold violation, and
the high data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:HTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-97

Trigger Commands
VIOLation:SETup:HOLD:DSOurce:LTHReshold

VIOLation:SETup:HOLD:DSOurce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
LTHReshold {{CHANnel<N>|EXTernal},<level>}

This command specifies the data source for the trigger hold violation, and the
low-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data
threshold.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the data threshold level for the trigger hold violation, and is
used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
LTHReshold? {CHANnel<N>|EXTernal}

The query returns the specified data source for the trigger hold violation, and
the low data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:LTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-98

Trigger Commands
VIOLation:SETup:HOLD:TIME

VIOLation:SETup:HOLD:TIME

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME <time>

This command specifies the amount of hold time used to test for a trigger
violation. The hold time is the amount of time that the data must be stable and
valid after a clock edge.

<time> Hold time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME?

The query returns the currently defined hold time for the trigger violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME] <time><NL>

27-99

Trigger Commands
VIOLation:SETup:SHOLd:CSOurce

VIOLation:SETup:SHOLd:CSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
{CHANnel<N>|EXTernal}

This command specifies the clock source for the clock used for the trigger setup
and hold violation. The clock must pass through the voltage level you have set
before the trigger circuitry looks for a setup and hold time violation.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce?

The query returns the currently defined clock source for the trigger setup and
hold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce]
{CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-100

Trigger Commands
VIOLation:SETup:SHOLd:CSOurce:LEVel

VIOLation:SETup:SHOLd:CSOurce:LEVel

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
LEVel {{CHANnel<N>|EXTernal},<level>}

This command specifies the clock source trigger level for the clock used for the
trigger setup and hold violation. The clock must pass through the voltage level
you have set before the trigger circuitry looks for a setup and hold time violation.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the voltage level for the trigger setup and hold violation clock
waveform, and depends on the type of circuitry logic you are using.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
LEVel? {CHANnel<N>|EXTernal}

The query returns the specified clock source level for the trigger setup and hold
violation level for the clock source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:LEVel
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-101

Trigger Commands
VIOLation:SETup:SHOLd:CSOurce:EDGE

VIOLation:SETup:SHOLd:CSOurce:EDGE

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
EDGE {RISing|FALLing}

This command specifies the clock source trigger edge for the clock used for the
trigger setup and hold violation. The clock must pass through the voltage level
you have set before the trigger circuitry looks for a setup and hold time violation.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger setup
and hold violation level for the clock source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:EDGE]
{RISing|FALLing}<NL>

27-102

Trigger Commands
VIOLation:SETup:SHOLd:DSOurce

VIOLation:SETup:SHOLd:DSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce
{CHANnel<N>|EXTernal}

The data source commands specify the data source for the trigger setup and
hold violation.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce?

The query returns the currently defined data source for the trigger setup and
hold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce]
{CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-103

Trigger Commands
VIOLation:SETup:SHOLd:DSOurce:HTHReshold

VIOLation:SETup:SHOLd:DSOurce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
HTHReshold {{CHANnel<N>|EXTernal},<level>}

This command specifies the data source for the trigger setup and hold violation,
and the high-level data threshold for the selected data source. Data is valid
when it is above the high-level data threshold, and when it is below the low-
level data threshold.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the data threshold level for the trigger setup and hold
violation, and is used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
HTHReshold? {CHANnel<N>|EXTernal}

The query returns the specified data source for the trigger setup and hold
violation, and the high data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:HTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-104

Trigger Commands
VIOLation:SETup:SHOLd:DSOurce:LTHReshold

VIOLation:SETup:SHOLd:DSOurce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
LTHReshold {{CHANnel<N>|EXTernal},<level>}

This command specifies the data source for the trigger setup and hold violation,
and the low-level data threshold for the selected data source. Data is valid when
it is above the high-level data threshold, and when it is below the low-level data
threshold.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the data threshold level for the trigger setup and hold
violation, and is used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
LTHReshold? {CHANnel<N>|EXTernal}

The query returns the specified data source for the setup and trigger hold
violation, and the low data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:LTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-105

Trigger Commands
VIOLation:SETup:SHOLd:SetupTIMe (STIMe)

VIOLation:SETup:SHOLd:SetupTIMe (STIMe)

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe
<time>

This command specifies the amount of setup time used to test for both a setup
and hold trigger violation. The setup time is the amount of time that the data
must be stable and valid before a clock edge.

<time> Setup time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe?

The query returns the currently defined setup time for the setup and hold
trigger violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe] <time><NL>

27-106

Trigger Commands
VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)

VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:HoldTIMe
<time>

This command specifies the amount of hold time used to test for both a setup
and hold trigger violation. The hold time is the amount of time that the data
must be stable and valid after a clock edge.

<time> Hold time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLD:HoldTIMe?

The query returns the currently defined hold time for the setup and hold trigger
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLD:HoldTIMe] <time><NL>

27-107

Transition Violation Mode

Use Transition Violation Mode to find any edge in your waveform that
violates a rise time or fall time specification. Infiniium Oscilloscopes find
a transition violation trigger by looking for any pulses in your waveform
with rising or falling edges that do not cross two voltage levels in the
amount of time you have specified.

The rise time is measured from the time that your waveform crosses the
low threshold until it crosses the high threshold. The fall time is
measured from the time that the waveform crosses the high threshold
until it crosses the low threshold.

Source Use Source to select the channel used for a transition violation trigger.

Low Threshold Use Low Threshold to set the low voltage threshold.

High Threshold Use High Threshold to set the high voltage threshold.

Type Use Type to select Rise Time or Fall Time violation.

Trigger On Trigger On parameters include > Time and < Time.

> Time Use > Time to look for transition violations that are longer than the time
specified.

< Time Use < Time to look for transition violations that are less than the time
specified.

Time Use Time to set the amount of time to determine a rise time or fall time
violation.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

27-108

Set the Mode Before Executing Commands

Before executing the :TRIGger:ADVanced:VIOLation:TRANsition
commands, set the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE TRANsition

To query the oscilloscope for the advanced trigger violation mode, enter:

:TRIGger:ADVanced:VIOLation:MODE?

27-109

Trigger Commands
VIOLation:TRANsition

VIOLation:TRANsition

Command :TRIGger:ADVanced:VIOLation:TRANsition:
{GTHan|LTHan} <time>

This command lets you look for transition violations that are greater than or
less than the time specified.

<time> The time for the trigger violation transition, in seconds.

Query :TRIGger:ADVanced:VIOLation:TRANsition:
{GTHan|LTHan}?

The query returns the currently defined time for the trigger transition violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:{GTHan|LTHan}]
<time><NL>

27-110

Trigger Commands
VIOLation:TRANsition:SOURce

VIOLation:TRANsition:SOURce

Command :TRIGger:ADVanced:VIOLation:TRANsition:SOURce
{CHANnel<N>|EXTernal}

The transition source command lets you find any edge in your waveform that
violates a rise time or fall time specification. The oscilloscope finds a transition
violation trigger by looking for any pulses in your waveform with rising or falling
edges that do not cross two voltage levels in the amount of time you have
specified.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Query :TRIGger:ADVanced:VIOLation:TRANsition:SOURce?

The query returns the currently defined transition source for the trigger
transition violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:SOURce]
{CHANnel<N>|EXTernal}<NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-111

Trigger Commands
VIOLation:TRANsition:SOURce:HTHReshold

VIOLation:TRANsition:SOURce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
HTHReshold {{CHANnel<N>|EXTernal},<level>}

This command lets you specify the source and high threshold for the trigger
violation transition. The oscilloscope finds a transition violation trigger by
looking for any pulses in your waveform with rising or falling edges that do not
cross two voltage levels in the amount of time you have specified.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the voltage threshold level for the trigger transition violation,
and is used with the high and low threshold transition source commands.

Query :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
HTHReshold? {CHANnel<N>|EXTernal}

The query returns the specified transition source for the trigger transition high
threshold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:HTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-112

Trigger Commands
VIOLation:TRANsition:SOURce:LTHReshold

VIOLation:TRANsition:SOURce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
LTHReshold {{CHANnel<N>|EXTernal},<level>}

This command lets you specify the source and low threshold for the trigger
violation transition. The oscilloscope finds a transition violation trigger by
looking for any pulses in your waveform with rising or falling edges that do not
cross two voltage levels in the amount of time you have specified.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the voltage threshold level for the trigger transition violation,
and is used with the high and low threshold transition source commands.

Query :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
LTHReshold? {CHANnel<N>|EXTernal}

The query returns the currently defined transition source for the trigger
transition low threshold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:LTHReshold
{CHANnel<N>|EXTernal},] <level><NL>

EXTernal is Only Available in Some Infiniium Oscilloscopes

EXTernal is only available in 2-channel Infiniium Oscilloscope model.

27-113

Trigger Commands
VIOLation:TRANsition:TYPE

VIOLation:TRANsition:TYPE

Command :TRIGger:ADVanced:VIOLation:TRANsition:TYPE
{RISetime|FALLtime}

This command lets you select either a rise time or fall time transition violation
trigger event.

Query :TRIGger:ADVanced:VIOLation:TRANsition:TYPE?

The query returns the currently defined transition type for the trigger transition
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:TYPE]
{RISetime|FALLtime}<NL>

27-114

28

Waveform Commands

28-2

Waveform Commands

The WAVeform subsystem is used to transfer waveform data between a
computer and the oscilloscope. It contains commands to set up the
waveform transfer and to send or receive waveform records to or from
the oscilloscope. These WAVeform commands and queries are
implemented in the Infiniium Oscilloscopes:

• BANDpass?
• BYTeorder
• COMPlete?
• COUNt?
• COUPling?
• DATA?
• FORMat
• POINts?
• PREamble
• SEGMented:COUNt?
• SEGMented:TTAG?
• SOURce
• TYPE?
• VIEW
• XDISplay?
• XINCrement?
• XORigin?
• XRANge?
• XREFerence?
• XUNits?
• YDISplay?
• YINCrement?
• YORigin?
• YRANge?
• YREFerence?
• YUNits?

28-3

Data Acquisition

When data is acquired using the DIGitize command, the data is placed
in the channel or function memory of the specified source. After the
DIGitize command executes, the oscilloscope is stopped. If the
oscilloscope is restarted by your program or from the front panel, the
data acquired with the DIGitize command is overwritten.

You can query the preamble, elements of the preamble, or waveform data
while the oscilloscope is running, but the data will reflect only the current
acquisition, and subsequent queries will not reflect consistent data. For
example, if the oscilloscope is running and you query the X origin, the
data is queried in a separate command, it is likely that the first point in
the data will have a different time than that of the X origin. This is due
to data acquisitions that may have occurred between the queries. For
this reason, Agilent Technologies does not recommend this mode of
operation. Instead, you should use the DIGitize command to stop the
oscilloscope so that all subsequent queries will be consistent.

Waveform Data and Preamble

The waveform record consists of two parts: the preamble and the
waveform data. The waveform data is the actual sampled data acquired
for the specified source. The preamble contains the information for
interpreting the waveform data, including the number of points
acquired, the format of the acquired data, and the type of acquired data.
The preamble also contains the X and Y increments, origins, and
references for the acquired data.

The values in the preamble are set when you execute the DIGitize
command. The preamble values are based on the current settings of the
oscilloscope’s controls.

Function and channel data are volatile and must be read following a DIGgitize
command or the data will be lost when the oscilloscope is turned off.

28-4

Data Conversion

Data sent from the oscilloscope must be scaled for useful interpretation.
The values used to interpret the data are the X and Y origins and X and
Y increments. These values can be read from the waveform preamble.

Conversion from Data Values to Units

To convert the waveform data values (essentially A/D counts) to
real-world units, such as volts, use the following scaling formulas:

Y-axis Units = data value x Yincrement + Yorigin (analog channels)
X-axis Units = data index x Xincrement + Xorigin,

where the data index starts at zero: 0, 1, 2, ..., n-1.

The first data point for the time (X-axis units) must be zero, so the time
of the first data point is the X origin.

Data Format for Data Transfer

There are four types of data formats that you can select using the
:WAVeform:FORMat command: ASCii, BYTE, WORD, and LONG. Refer
to the FORMat command in this chapter for more information on data
formats.

28-5

Waveform Commands
BANDpass?

BANDpass?

Query :WAVeform:BANDpass?

The :WAVeform:BANDpass? query returns an estimate of the maximum and
minimum bandwidth limits of the source waveform. The bandwidth limits are
computed as a function of the coupling and the selected filter mode. The cutoff
frequencies are derived from the acquisition path and software filtering.

Returned Format [:WAVeform:BANDpass]<lower_cutoff>,<upper_cutoff><NL>

<lower_cutoff> Minimum frequency passed by the acquisition system.

<upper_cutoff> Maximum frequency passed by the acquisition system.

Example This example places the estimated maximum and minimum bandwidth limits
of the source waveform in the string variable, Bandwidth$, then prints the
contents of the variable to the computer's screen.
10 DIM Bandwidth$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:BANDPASS?"
30 ENTER 707;Bandwidth$
40 PRINT Bandwidth$
50 END

28-6

Waveform Commands
BYTeorder

BYTeorder

Command :WAVeform:BYTeorder {MSBFirst | LSBFirst}

The :WAVeform:BYTeorder command selects the order in which bytes are
transferred to and from the oscilloscope using WORD and LONG formats. If
MSBFirst is selected, the most significant byte is transferred first. Otherwise,
the least significant byte is transferred first. The default setting is MSBFirst.

Example This example sets up the oscilloscope to send the most significant byte first
during data transmission.
10 OUTPUT 707;":WAVEFORM:BYTEORDER MSBFIRST"
20 END

Query :WAVeform:BYTeorder?

The :WAVeform:BYTeorder? query returns the current setting for the byte order.

Returned Format [:WAVeform:BYTeorder] {MSBFirst | LSBFirst}<NL>

Example This example places the current setting for the byte order in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[10]!Dimension variable
20 OUTPUT 707;":WAVEFORM:BYTEORDER?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

MSBFirst and LSBFirst

The data transfer rate is faster using the LSBFirst byte order.

MSBFirst is for microprocessors like Motorola’s, where the most significant byte
resides at the lower address. LSBFirst is for microprocessors like Intel’s, where the
least significant byte resides at the lower address.

28-7

Waveform Commands
COMPlete?

COMPlete?

Query :WAVeform:COMPlete?

The :WAVeform:COMPlete? query returns the percent of time buckets that are
complete for the currently selected waveform.

For the NORMal, RAW, and INTerpolate waveform types, the percent complete
is the percent of the number of time buckets that have data in them, compared
to the memory depth.

For the AVERage waveform type, the percent complete is the number of time
buckets that have had the specified number of hits divided by the memory
depth. The hits are specified by the :ACQuire:AVERage:COUNt command.

For the VERSus waveform type, percent complete is the least complete of the
X-axis and Y-axis waveforms.

Returned Format [:WAVeform:COMPlete] <criteria><NL>

<criteria> 0 to 100 percent, rounded down to the closest integer.

Example This example places the current completion criteria in the string variable,
Criteria$, then prints the contents of the variable to the computer's screen.
10 DIM Criteria$[10]!Dimension variable
20 OUTPUT 707;":WAVEFORM:COMPLETE?"
30 ENTER 707;Criteria$
40 PRINT Criteria$
50 END

28-8

Waveform Commands
COUNt?

COUNt?

Query :WAVeform:COUNt?

The :WAVeform:COUNt? query returns the fewest number of hits in all of the
time buckets for the currently selected waveform. For the AVERage waveform
type, the count value is the fewest number of hits for all time buckets. This
value may be less than or equal to the value specified with the
:ACQuire:AVERage:COUNt command.

For the NORMal, RAW, INTerpolate, and VERSus waveform types, the count
value returned is one, unless the data contains holes (sample points where no
data is acquired). If the data contains holes, zero is returned.

Returned Format [:WAVeform:COUNt] <number><NL>

<number> An integer. Values range from 0 to 1 for NORMal, RAW, or INTerpolate types,
and VERSus type. If averaging is on values range from 0 to 4096.

Example This example places the current count field value in the string variable, Count$,
then prints the contents of the variable to the computer's screen.
10 DIM Count$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:COUNT?"
30 ENTER 707;Count$
40 PRINT Count$
50 END

28-9

Waveform Commands
COUPling?

COUPling?

Query :WAVeform:COUPling?

The :WAVeform:COUPling? query returns the input coupling of the currently
selected source.

Returned Format [:WAVeform:COUPling] {AC | DC | DCFifty | LFReject}<NL>

Example This example places the current input coupling of the selected waveform in the
string variable, Setting$, then prints the contents of the variable.
10 DIM Setting$[10]!Dimension variable
20 OUTPUT 707;":WAVEFORM:COUPLING?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

See Also The :CHANnel<N>:INPut command sets the coupling for a particular channel.

You can use the :WAVeform:SOURce command to set the source for the coupling
query.

Source Return Value

CGRade Coupling of the lowest numbered channel that is on.

CHANnel The coupling of the channel number

FUNCtion The coupling of the lowest numbered channel in the function

WMEMory The coupling value of the source that was loaded into the waveform
memory. If channel 1 was loaded, it would be the channel 1 coupling
value.

28-10

Waveform Commands
DATA?

DATA?

Query :WAVeform:DATA? [<start>[,<size>]]

The :WAVeform:DATA? query outputs waveform data to the computer over the
GPIB Interface. The data is copied from a waveform memory, function, channel,
or digital channel previously specified with the :WAVeform:SOURce command.
The returned waveform data in response to the :WAVeform:DATA? query is in
the following order.

The preamble queries, such as :WAVeform:XINCrement, can be used to
determine the vertical scaling, the horizontal scaling, and so on.

<start> An integer value which is the starting point in the source memory which is the
first waveform point to transfer.

<size> An integer value which is the number of points in the source memory to transfer.
If the size specified is greater than the amount of available data then the size is
adjusted to be the maximum available memory depth minus the <start> value.

Returned Format [:WAVeform:DATA] <block_data>[,<block_data>]<NL>

If the waveform data is ASCII formatted, then waveform data is separated by
commas.

n Length = L 0 1 2 ... L-1 END

1st byte, word, or ASCII character of waveform data

Number of bytes of waveform data to follow

Last byte, word, or ASCII
character of waveform data

2nd byte, word, or ASCII character of waveform data

Number of bytes in Length block

Start of response Termination character

28-11

Waveform Commands
DATA?

BASIC Example This example places the current waveform data from channel 1 of the array
Wdata in the word format.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1!Select source
30 OUTPUT 707;":WAVEFORM:FORMAT WORD"!Select word format
40 OUTPUT 707;":WAVEFORM:DATA?"
50 ENTER 707 USING "#,1A";Pound_sign$
60 ENTER 707 USING "#,1D";Header_length
70 ENTER 707 USING "#,"&VAL$(Header_length)&"D";Length
80 Length = Length/2!Length in words
90 ALLOCATE INTEGER Wdata(1:Length)
100 ENTER 707 USING "#,W";Wdata(*)
110 ENTER 707 USING "-K,B";End$
120 END

The format of the waveform data must match the format previously specified
by the :WAVeform:FORMat, :WAVeform:BYTeorder, and :WAVeform:PREamble
commands.

HP BASIC Image Specifiers

is an HP BASIC image specifier that terminates the statement when the last ENTER
item is terminated. EOI and line feed are the item terminators.

1A is an HP BASIC image specifier that places the next character received in a string
variable.

1D is an HP BASIC image specifier that places the next character in a numeric
variable.

W is an HP BASIC image specifier that places the data in the array in word format
with the first byte entered as the most significant byte.

-K is an HP BASIC image specifier that places the block data in a string, including
carriage returns and line feeds until EOI is true or when the dimensioned length of
the string is reached.

B is an HP BASIC specifier that enters the next byte in a variable.

28-12

Waveform Commands
DATA? Example for Analog Channels

DATA? Example for Analog Channels

The following C example shows how to transfer both BYTE and WORD
formatted waveform data for analog channels to a computer. There is a file on
the Infiniium Oscilloscope Example Programs disk called readdata.c in the c
directory that contains this program.

/* readdata. c */

/* Reading Byte and Word format Example. This program demonstrates the order of
 commands suggested for operation of the Infiniium oscilloscope by LAN or GPIB.
 This program initializes the scope, acquires data, transfers data in both
 the BYTE and WORD formats, converts the data into voltage and time values,
 and stores the data on the PC as time, word voltage values, and byte
 voltage values in a comma-separated file format. This format is useful
 for spreadsheet applications. It assumes a SICL GPIB interface card exists
 as 'hpib7' and an Infiniium oscilloscope at address 7. It also requires a
 waveform connected to Channel 1.
*/

#include <stdio.h> /* location of: printf() */
#include <stdlib.h> /* location of: atof(), atoi() */
#include <string.h> /* location of: strlen() */
#include <sicl.h>

/* Prototypes */
int InitIO(void);
void WriteIO(char *buffer);
unsigned long ReadByte(char *buffer, unsigned long BytesToRead);
unsigned long ReadWord(short *buffer, unsigned long BytesToRead);
void ReadDouble(double *buffer);
void CloseIO(void);
void AcquireData(void);
void GetVoltageConversionFactors(double *yInc, double *yOrg);
void GetTimeConversionFactors(double *xInc, double *xOrg);
void CreateTimeData(double xInc,
 double xOrg,
 unsigned long AcquiredLength,
 double *TimeValues);
void ConvertWordDataToVolts(short *byteData,
 double *byteVolts,
 unsigned long AcquiredLength,
 double yInc,
 double yOrg);

28-13

Waveform Commands
DATA? Example for Analog Channels

void ConvertByteDataToVolts(char *byteData,
 double *byteVolts,
 unsigned long AcquiredLength,
 double yInc,
 double yOrg);
void WriteCsvToFile(double *TimeValues,
 double *wordVolts,
 double *byteVolts,
 unsigned long AcquiredLength);
unsigned long SetupDataTransfer(void);

/* Defines */
#define MAX_LENGTH 131072

ifdef LAN
 #define INTERFACE "lan[130.29.71.203]:hpib7,7"
elseif
 #define INTERFACE "hpib7"
endif

#define DEVICE_ADDR "hpib7,7"
#define TRUE 1
#define FALSE 0
#define IO_TIMEOUT 20000

/* Globals */
INST bus;
INST scope;
double TimeValues[MAX_LENGTH]; /* Time value of data */
double byteVolts[MAX_LENGTH]; /* Voltage value of data in byte format */
double wordVolts[MAX_LENGTH]; /* Voltage value of data in word format */
short wordData[MAX_LENGTH/2]; /* Buffer for reading word format data */
char byteData[MAX_LENGTH]; /* Buffer for reading byte format data */

28-14

Waveform Commands
DATA? Example for Analog Channels

void main(void)
{
 double xOrg=0.0, xInc=0.0; /* Values used to create time data */
 double yOrg=0.0, yInc=0.0; /* Values used to convert data to volts */
 char Term;
 unsigned long BytesToRead;

 if (!InitIO()) {
 exit(1);
 }

 AcquireData();

 WriteIO(":WAVeform:FORMat WORD"); /* Setup transfer format */
 WriteIO(":WAVeform:BYTeorder LSBFirst");/* Setup transfer of LSB first */
 WriteIO(":WAVeform:SOURce CHANnel1"); /* Waveform data source channel 1 */

 GetVoltageConversionFactors(&yInc, &yOrg);
 BytesToRead = SetupDataTransfer();
 ReadWord(wordData, BytesToRead);
 ReadByte(&Term, 1L); /* Read termination character */
 ConvertWordDataToVolts(wordData, wordVolts, BytesToRead,
 yInc, yOrg);

 WriteIO(":WAVeform:FORMat BYTE");/* Setup transfer format */

 GetVoltageConversionFactors(&yInc, &yOrg);
 BytesToRead = SetupDataTransfer();
 ReadByte(byteData, BytesToRead);
 ReadByte(&Term, 1L); /* Read the termination character */
 ConvertByteDataToVolts(byteData, byteVolts, BytesToRead,
 yInc, yOrg);

 GetTimeConversionFactors(&xInc, &xOrg);
 CreateTimeData(xInc, xOrg, BytesToRead, TimeValues);

 WriteCsvToFile(TimeValues, wordVolts, byteVolts, BytesToRead);

 CloseIO();
}

28-15

Waveform Commands
DATA? Example for Analog Channels

/***
* Function name: InitIO
* Parameters: none
* Return value: none
* Description: This routine initializes the SICL environment. It sets up
* error handling, opens both an interface and device session,
* sets timeout values, clears the GPIB interface card,
* and clears the oscilloscope's GPIB card by performing a
* Selected Device Clear.
**/

int InitIO(void)
{

 ionerror(I_ERROR_EXIT); /* set-up interface error handling */

 bus = iopen(INTERFACE); /* open interface session */
 if (bus == 0) {
 printf("Bus session invalid\n");
 return FALSE;
 }

 itimeout(bus, IO_TIMEOUT); /* set bus timeout */
 iclear(bus); /* clear the interface */

#ifdef LAN
 scope = bus;
#else
 scope = iopen(DEVICE_ADDR); /* open the scope device session */
 if (scope == 0) {
 printf("Scope session invalid\n");
 iclose(bus); /* close interface session */
 _siclcleanup(); /* required for 16-bit applications */
 return FALSE;
 }

 itimeout(scope, IO_TIMEOUT); /* set device timeout */
 iclear(scope); /* perform Selected Device Clear on oscilloscope */
#endif
}

28-16

Waveform Commands
DATA? Example for Analog Channels

/***
* Function name: WriteIO
* Parameters: char *buffer which is a pointer to the character
* string to be output
* Return value: none
* Description: This routine outputs strings to the oscilloscope device
* session using SICL commands.
**/

void WriteIO(char *buffer)
{
 unsigned long actualcnt;
 unsigned long BytesToWrite;
 int send_end = 1;

 BytesToWrite = strlen(buffer);

 iwrite(scope, buffer, BytesToWrite, send_end, &actualcnt);

}

/***
* Function name: ReadByte
* Parameters: char *buffer which is a pointer to the array to store
* the read bytes
* unsigned long BytesToRead which indicates the maximum
* number of bytes to read
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the scope device session
* using SICL commands.
**/

unsigned long ReadByte(char *buffer, unsigned long BytesToRead)
{
 unsigned long BytesRead;
 int reason;

 BytesRead = BytesToRead;
 iread(scope, buffer, BytesToRead, &reason, &BytesRead);

 return BytesRead;
}

28-17

Waveform Commands
DATA? Example for Analog Channels

/***
* Function name: ReadWord
* Parameters: short *buffer which is a pointer to the word array
* to store the bytes read
* unsigned long BytesToRead which indicates the maximum
* number of bytes to read
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs an array of short values from the
* oscilloscope device session using SICL commands.
**/

unsigned long ReadWord(short *buffer, unsigned long BytesToRead)
{
 long BytesRead;
 int reason;

 BytesRead = BytesToRead;
 iread(scope, (char *) buffer, BytesToRead, &reason, &BytesRead);

 return BytesRead;
}

/***
* Function name: ReadDouble
* Parameters: double *buffer which is a pointer to the float value to read
* Return value: none
* Description: This routine inputs a float value from the oscilloscope
* device session using SICL commands.
**/

void ReadDouble(double *buffer)
{
 iscanf(scope, "%lf", buffer);
}

28-18

Waveform Commands
DATA? Example for Analog Channels

/***
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device and interface sessions for the
* SICL environment, and calls the routine _siclcleanup
* which de-allocates resources used by the SICL environment.
**/

void CloseIO(void)
{

 iclose(scope); /* close device session */
 iclose(bus); /* close interface session */

 _siclcleanup(); /* required for 16-bit applications */

}

/**
* Function name: AcquireData
* Parameters: none
* Return value: none
* Description: This routine acquires data using the current
* oscilloscope settings.
**/

void AcquireData(void)
{
 /*
 * The root level :DIGitize command is recommended for acquiring new
 * waveform data. It initialize's the oscilloscope's data buffers,
 * acquires new data, and ensures that acquisition criteria are met
 * before the acquisition is stopped. Note that the display is
 * automatically turned off when you use this form of the :DIGitize
 * command and must be turned on to view the captured data on screen.
 */

 WriteIO(":DIGitize CHANnel1");
 WriteIO(":CHANnel1:DISPlay ON");

}

28-19

Waveform Commands
DATA? Example for Analog Channels

/***
* Function name: GetVoltageConversionFactors
* Parameters: double yInc which is the voltage difference represented by
* adjacent waveform data digital codes.
* double yOrg which is the voltage value of digital code 0.
* Return value: none
* Description: This routine reads the conversion factors used to convert
* waveform data to volts.
**/

void GetVoltageConversionFactors(double *yInc, double *yOrg)
{

 /* Read values which are used to convert data to voltage values */

 WriteIO(":WAVeform:YINCrement?");
 ReadDouble(yInc);

 WriteIO(":WAVeform:YORigin?");
 ReadDouble(yOrg);

}

28-20

Waveform Commands
DATA? Example for Analog Channels

/***
* Function name: SetupDataTransfer
* Parameters: none
* Return value: Number of bytes of waveform data to read.
* Description: This routine sets up the waveform data transfer and gets
* the number of bytes to be read.
**/

unsigned long SetupDataTransfer(void)
{
 unsigned long BytesToRead;
 char header_str[9];
 char cData;
 unsigned long BytesRead;

 WriteIO(":WAVeform:DATA?"); /* Request waveform data */

 /* Find the # character */

 do {
 ReadByte(&cData, 1L);
 } while (cData != '#');

 /* Read the next byte which tells how many bytes to read for the number
 * of waveform data bytes to transfer value.
 */

 ReadByte(&cData, 1L);
 BytesToRead = cData - '0'; /* Convert to a number */

 /* Reads the number of data bytes that will be transfered */

 BytesRead = ReadByte(header_str, BytesToRead);
 header_str[BytesRead] = '\0';
 BytesToRead = atoi(header_str);

 return BytesToRead;

}

28-21

Waveform Commands
DATA? Example for Analog Channels

/***
* Function name: GetTimeConversionFactors
* Parameters: double xInc which is the time between consecutive
* sample points.
* double xOrg which is the time value of the first data point.
* Return value: none
* Description: This routine transfers the waveform conversion
* factors for the time values.
**/

void GetTimeConversionFactors(double *xInc, double *xOrg)
{

 /* Read values which are used to create time values */

 WriteIO(":WAVeform:XINCrement?");
 ReadDouble(xInc);

 WriteIO(":WAVeform:XORigin?");
 ReadDouble(xOrg);

}

28-22

Waveform Commands
DATA? Example for Analog Channels

/**
* Function name: CreateTimeData
* Parameters: double xInc which is the time between consecutive
* sample points
* double xOrg which is the time value of the first data point
* unsigned long AcquiredLength which is the number of
* data points
* double TimeValues is a pointer to the array where time
* values are stored
* Return value: none
* Description: This routine converts the data to time values using
* the values that describe the waveform. These values are
* stored in global variables.
**/

void CreateTimeData(double xInc, double xOrg,
 unsigned long AcquiredLength, double *TimeValues)
{
 unsigned long i;

 for (i = 0; i < AcquiredLength; i++) {
 TimeValues[i] =(i * xInc) + xOrg; /* calculate time values */
 }

}

28-23

Waveform Commands
DATA? Example for Analog Channels

/***
* Function name: ConvertWordDataToVolts
* Parameters: short *wordData which is a pointer to the array
* of read word values
* double *wordVolts which is a pointer to the array of
* calculated voltages
* unsigned long AcquiredLength which is the number of data
* bytes read
* double yInc which is the voltage difference represented
* by adjacent waveform data digital codes.
* double yOrg which is the voltage value of digital code 0.
* Return value: none
* Description: This routine converts the word format waveform data to
* voltage values using values that describe the waveform.
* These values are stored in global arrays for use by
* other routines.
**/

void ConvertWordDataToVolts(short *wordData, double *wordVolts,
 unsigned long AcquiredLength,
 double yInc, double yOrg)
{
 unsigned long i;

 for (i = 0; i < AcquiredLength/2; i++) {
 /* calculate voltage values */
 wordVolts[i] = (wordData[i] * yInc) + yOrg;
 }

}

28-24

Waveform Commands
DATA? Example for Analog Channels

/***
* Function name: ConvertByteDataToVolts
* Parameters: short *byteData which is a pointer to the array of
* read byte values
* double *byteVolts which is a pointer to the array of
* calculated voltages
* unsigned long AcquiredLength which is the number of data
* bytes read
* double yInc which is the voltage difference represented
* by adjacent waveform data digital codes.
* double yOrg which is the voltage value of digital code 0.
* Return value: none
* Description: This routine converts the byte format waveform data to
* voltage values using the values that describe the
* waveform. These values are stored in global variables.
**/

void ConvertByteDataToVolts(char *byteData, double *byteVolts,
 unsigned long AcquiredLength,
 double yInc, double yOrg)
{
 unsigned long i;

 for (i = 0; i < AcquiredLength; i++) {
 /* calculate voltage values */
 byteVolts[i] = (byteData[i] * yInc) + yOrg;
 }

}

28-25

Waveform Commands
DATA? Example for Analog Channels

/***
* Function name: WriteCsvToFile
* Parameters: double *TimeValues which is a pointer to an array of
* calculated time values
* double *wordVolts which is a pointer to an array of
* calculated word format voltage values
* double *byteVolts which is a pointer to an array of
* calculated byte format voltage values
* unsigned long AcquiredLength which is the number of data
* points read
* Return value: none
* Description: This routine stores the time and voltage information about
* the waveform as time, word format voltage, and byte format
* voltage separated by commas to a file.
**/

void WriteCsvToFile(double *TimeValues, double *wordVolts,
 double *byteVolts, unsigned long AcquiredLength)
{
 FILE *fp;
 unsigned long i;

 fp = fopen("pairs.csv", "wb"); /* Open file in binary mode - clear file
 if it already exists */

 if (fp != NULL) {

 fprintf(fp, "Time,Word Volts,Byte Volts\n");

 for (i = 0; i < AcquiredLength; i++) {
 fprintf(fp, "%e,%f,%f\n", TimeValues[i], wordVolts[i], byteVolts[i]);
 }

 fclose(fp);
 }
 else {
 printf("Unable to open file 'pairs.csv'\n");
 }

}

28-26

Waveform Commands
DATA? Example for Digital Channels

DATA? Example for Digital Channels

The following C example shows how to transfer both BYTE and WORD
formatted waveform data for digital channels to a computer. There is a file on
the Infiniium Oscilloscope Example Programs disk called readdig.c in the c
directory that contains this program.

/* readdig. c */

/* Reading Byte and Word format Example. This program demonstrates the order of
 commands suggested for operation of the Infiniium oscilloscope by LAN or GPIB.
 This program initializes the scope, acquires data, transfers data in both the
 BYTE and WORD formats, converts the data into hex, octal, binary and time values,
 and stores the data in a file as comma-separated values. This format is useful
 for spreadsheet applications.
*/

#include <stdio.h> /* location of: printf() */
#include <stdlib.h> /* location of: atof(), atoi() */
#include <string.h> /* location of: strlen() */
#include "sicl.h"

/* Prototypes */
int InitIO(void);
void WriteIO(char *buffer);
unsigned long ReadByte(char *buffer, unsigned long BytesToRead);
unsigned long ReadWord(short *buffer, unsigned long BytesToRead);
void ReadDouble(double *buffer);
void CloseIO(void);
void AcquireData(void);
void GetTimeConversionFactors(void);
void CreateTimeData(unsigned long AcquiredLength,
 double *TimeValues);
void WriteCsvToFile(double *TimeValues, unsigned short *wordData,
 unsigned char *byteData, unsigned long AcquiredLength);
unsigned long SetupDataTransfer(double lTime, double rTime);
int Round(double number);

/* Defines */
#define MAX_LENGTH 8192000

#define LAN

#ifdef LAN
 #define INTERFACE "lan[130.29.71.202]:hpib7,7"
#else
 #define INTERFACE "hpib7"

28-27

Waveform Commands
DATA? Example for Digital Channels

#endif

#define DEVICE_ADDR "hpib7,7"
#define TRUE 1
#define FALSE 0
#define IO_TIMEOUT 20000

/* Globals */
INST bus;
INST scope;
double TimeValues[MAX_LENGTH]; /* Time value of data */
unsigned short wordData[MAX_LENGTH/2];/* Buffer for reading word format data */
unsigned char byteData[MAX_LENGTH]; /* Buffer for reading byte format data */
double xOrg, xInc; /* Values necessary to create time data */

int Start;

void main(void)
{
 char Term;
 unsigned long BytesToRead;

 if (!InitIO()) {
 exit(1);
 }

 AcquireData();

 WriteIO(":SYStem:HEADer OFF");
 WriteIO(":SYStem:LONGform OFF");
 WriteIO(":WAVeform:BYTEorder LSBFirst"); /* Setup byte order */
 WriteIO(":WAVeform:FORMat WORD"); /* Setup transfer format */
 WriteIO(":WAVeform:SOURce POD1"); /* Waveform data source pod 1 */

 GetTimeConversionFactors();

 BytesToRead = SetupDataTransfer(-25E-6, 25E-6);
 ReadWord(wordData, BytesToRead);
 ReadByte(&Term, 1L); /* Read termination character */

 WriteIO(":WAVeform:FORMat BYTE"); /* Setup transfer format */

 BytesToRead = SetupDataTransfer(-25E-6, 25E-6);
 ReadByte(byteData, BytesToRead);
 ReadByte(&Term, 1L); /* Read termination character */

 CreateTimeData(BytesToRead, TimeValues);

28-28

Waveform Commands
DATA? Example for Digital Channels

 WriteCsvToFile(TimeValues, wordData, byteData, BytesToRead);

 CloseIO();

}

/***
* Function name: InitIO
* Parameters: none
* Return value: none
* Description: This routine initializes the SICL environment. It sets up
* errorhandling, opens both an interface and device session,
* sets timeout values, clears the GPIB interface card, and
* clears the oscilloscope's GPIB card by performing a
* Selected Device Clear.
***/

int InitIO(void)
{

 ionerror(I_ERROR_EXIT); /* set-up interface error handling */

 bus = iopen(INTERFACE); /* open interface session */
 if (bus == 0) {
 printf("Bus session invalid\n");
 return FALSE;
 }

 itimeout(bus, IO_TIMEOUT); /* set bus timeout */
 iclear(bus); /* clear the interface */

#ifdef LAN
 scope = bus;
#else
 scope = iopen(DEVICE_ADDR); /* open the scope device session */
 if (scope == 0) {
 printf("Scope session invalid\n");
 iclose(bus); /* close interface session */
 _siclcleanup(); /* required for 16-bit applications */
 return FALSE;
 }

 itimeout(scope, IO_TIMEOUT); /* set device timeout */
 iclear(scope); /* perform Selected Device Clear on oscilloscope */
#endif

 return TRUE;
}

28-29

Waveform Commands
DATA? Example for Digital Channels

/***
* Function name: WriteIO
* Parameters: char *buffer which is a pointer to the character string to
* be output
* Return value: none
* Description: This routine outputs strings to the oscilloscope device
* session using SICL commands.
***/

void WriteIO(char *buffer)
{
 unsigned long actualcnt;
 unsigned long BytesToWrite;
 int send_end = 1;

 BytesToWrite = strlen(buffer);

 iwrite(scope, buffer, BytesToWrite, send_end, &actualcnt);

}

/**
* Function name: ReadByte
* Parameters: char *buffer which is a pointer to the array to store
* the read bytes unsigned long BytesToRead which indicates
* the maximum number of bytes to read
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the scope device session
* using SICL commands.
**/

unsigned long ReadByte(char *buffer, unsigned long BytesToRead)
{
 unsigned long BytesRead=0L;
 int reason;

 BytesRead = BytesToRead;
 iread(scope, buffer, BytesToRead, &reason, &BytesRead);

 return BytesRead;
}

28-30

Waveform Commands
DATA? Example for Digital Channels

/**
* Function name: ReadWord
* Parameters: short *buffer which is a pointer to the word array to store
* the bytes read unsigned long BytesToRead which indicates
* the maximum number of bytes to read
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs an array of short values from the
* oscilloscope device session using SICL commands.
**/

unsigned long ReadWord(short *buffer, unsigned long BytesToRead)
{
 long BytesRead=0L;
 int reason;

 BytesRead = BytesToRead;
 iread(scope, (char *) buffer, BytesToRead, &reason, &BytesRead);

 return BytesRead;
}

/**
* Function name: ReadDouble
* Parameters: double *buffer which is a pointer to the float value to read
* Return value: none
* Description: This routine inputs a float value from the oscilloscope
* device session using SICL commands.
***/

void ReadDouble(double *buffer)
{
 int error;
 error = iscanf(scope, "%lf", buffer);
}

28-31

Waveform Commands
DATA? Example for Digital Channels

/**
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device and interface sessions for
* the SICL environment, and calls the routine _siclcleanup
* which de-allocates resources used by the SICL environment.
**/

void CloseIO(void)
{

 iclose(scope); /* close device session */
 iclose(bus); /* close interface session */

 _siclcleanup(); /* required for 16-bit applications */

}

/**
* Function name: AcquireData
* Parameters: none
* Return value: none
* Description: This routine acquires data using the current
* oscilloscope settings.
**/

void AcquireData(void)
{
 /*
 * The root level :DIGitize command is recommended for acquiring new
 * waveform data. It initialize's the oscilloscope's data buffers,
 * acquires new data, and ensures that acquisition criteria are met
 * before the acquisition is stopped. Note that the display is
 * automatically turned off when you use this form of the
 * :DIGitize command and must be turned on to view the captured data
 * on screen.
 */

 WriteIO(":DIGitize POD1");
 WriteIO(":POD1:DISPlay ON");

}

28-32

Waveform Commands
DATA? Example for Digital Channels

/**
* Function name: SetupDataTransfer
* Parameters: double lTime which is the time value of the first
* waveform memory location of data.
* double rTime which is the time value of the last
* waveform memory location of data.
* Return value: Number of bytes of waveform data to read.
* Description: This routine sets up the waveform data transfer and gets
* the number of bytes to be read. The beginning of data
* starts with the # character followed by a number which
* tells how many bytes to read for the integer which is the
* total number of data bytes that are being transfered.
* Following this is the waveform data. For example, if 1024
* bytes of waveform data is being transfered then this
* information will be as follows:
* #41024 <1024 data bytes>
**
********/

unsigned long SetupDataTransfer(double lTime, double rTime)
{
 unsigned long BytesToRead;
 char header_str[8];
 char cData;
 unsigned long BytesRead;
 int Size;
 char Range[100];

 /* Find the index value of the first data memory location */

 Start = Round((lTime - xOrg)/xInc);
 if (Start < 1) {
 Start = 1;
 }

 /* Find the number of data bytes that you want */

 Size = Round((rTime - lTime)/xInc);

 sprintf(Range, ":WAVeform:DATA? %d,%d", Start, Size);
 WriteIO(Range); /* Request waveform data */

 /* Find the # character */

 do {
 ReadByte(&cData, 1L);
 } while (cData != '#');

28-33

Waveform Commands
DATA? Example for Digital Channels

 /* Read the next byte which tells how many bytes to read for the number
 * of waveform data bytes to transfer value.
 */

 ReadByte(&cData, 1L);
 BytesToRead = cData - '0'; /* Convert to a number */

 /* Reads the number of data bytes that will be transfered */

 BytesRead = ReadByte(header_str, BytesToRead);
 header_str[BytesRead] = '\0';
 BytesToRead = atoi(header_str);

 return BytesToRead;

}

/**
* Function name: GetTimeConversionFactors
* Parameters: none
* Return value: none
* Description: This routine transfers the waveform conversion
* factors for the time values.
***/

Void GetTimeConversionFactors(void)
{

 /* Read values which are used to create time values */

 WriteIO(":WAVeform:XINCrement?");
 ReadDouble(&xInc);

 WriteIO(":WAVeform:XORigin?");
 ReadDouble(&xOrg);

}

28-34

Waveform Commands
DATA? Example for Digital Channels

/**
* Function name: CreateTimeData
* Parameters: unsigned long AcquiredLength which is the number of data
* points
* double TimeValues is a pointer to the array where time
* values are stored
* Return value: none
* Description: This routine converts the data to time values using
* the values that describe the waveform. These values are stored
* in global variables.
***/

void CreateTimeData(unsigned long AcquiredLength, double *TimeValues)
{
 unsigned long i;

 for (i = 0; i < AcquiredLength; i++) {
 TimeValues[i] =((Start + i) * xInc) + xOrg; /* calculate time values */
 }

}

28-35

Waveform Commands
DATA? Example for Digital Channels

/**
* Function name: WriteCsvToFile
* Parameters: double *TimeValues which is a pointer to an array of
* calculated time values
* unsigned short *wordData which is a pointer to an array of
* word format digital values
* unsigned char *byteData which is a pointer to an array of
* byte format digital values
* unsigned long AcquiredLength which is the number of data
* points read
* Return value: none
* Description: This routine stores the time and digital information about
* the waveform as time, word format, and byte format
* separated by commas to a file.
**/

void WriteCsvToFile(double *TimeValues, unsigned short *wordData,
 unsigned char *byteData, unsigned long AcquiredLength)
{
 FILE *fp;
 char Binary[9];
 unsigned long i;
 int j;
 int k;

 fp = fopen("digital.csv", "wb"); /* Open file in binary mode - clear file
 if it already exists */

 if (fp != NULL) {

 fprintf(fp, "Time,Decimal Word Data,Hex Word Data,Hex Byte Data,Binary Byte
Data\n");
 Binary[8] = '\0';

 for (i = 0; i < AcquiredLength; i++) {

 // Create the binary formated byte data
 for (j = 7, k = 0; j >= 0; j--, k++) {
 Binary[k] = ((byteData[i] & (1 << j)) >> j) + '0';
 }

 fprintf(fp, "%e,%d,%04X,%02X,%s\n", TimeValues[i], wordData[i], wordData[i],
 byteData[i], Binary);
 }

 fclose(fp);
 }
 else {

28-36

Waveform Commands
DATA? Example for Digital Channels

 printf("Unable to open file 'digital.csv'\n");
 }

}

/**
* Function name: Round
* Parameters: double number which is a floating point number
* to be converted.
* Return value: The rounded integer value for the number parameter.
* Description: This routine takes a floating point number and creates an
* integer.
***/

int Round(double number)
{
 if (number < 0.0f) {
 return ((int) (number - 0.5f));
 }
 else {
 return ((int) (number + 0.5f));
 }
}

28-37

Waveform Commands
DATA? Example for Digital Channels

Understanding WORD and BYTE Formats

Before you can understand how the WORD and BYTE downloads work, it is
necessary to understand how Infiniium creates waveform data.

Analog-to-digital
Conversion Basics

The input channel of every digital sampling oscilloscope contains an
analog-to-digital converter (ADC) as shown in Figure 28-1. The 8-bit ADC in
Infiniium consists of 256 voltage comparators. Each comparator has two inputs.
One input is connected to a reference dc voltage level and the other input is
connected to the channel input. When the voltage of the waveform on the
channel input is greater than the dc level, then the comparator output is a 1
otherwise the output is a 0. Each of the comparators has a different reference
dc voltage. The output of the comparators is converted into an 8-bit integer by
the encoder.

Figure 28-1

Block Diagram of an ADC

_

+

_

+

..

.. ..

_

+

_

+

Encoder

Channel Input

Vref

8 bits

-Vref

28-38

Waveform Commands
DATA? Example for Digital Channels

All ADCs have non-linearity errors which, if not corrected, can give less accurate
vertical measurement results. For example, the non-linearity error for a 3-bit
ADC is shown in the following figure.

Figure 28-2

ADC Non-linearity Errors for a 3-bit ADC

The graph on the left shows an ADC which has no non-linearity errors. All of
the voltage levels are evenly spaced producing output codes that represent
evenly spaced voltages. In the graph on the right, the voltages are not evenly
spaced with some being wider and some being narrower than the others.

Normalized Analog Input

1/
8F

S

2/
8F

S

3/
8F

S

4/
8F

S

5/
8F

S

6/
8F

S

7/
8F

S FS0

001

010

011

100

101

110

111

000

Ou
tp

ut
 D

ig
ita

l N
um

be
r

Ideal ADC Conversion

Normalized Analog Input
1/

8F
S

2/
8F

S

3/
8F

S

4/
8F

S

5/
8F

S

6/
8F

S

7/
8F

S FS0

001

010

011

100

101

110

111

000

Ou
tp

ut
 D

ig
ita

l N
um

be
r

Nonlinearity
Errors

Non-ideal ADC Conversion

FS = the full scale
voltage of the ADC

28-39

Waveform Commands
DATA? Example for Digital Channels

When you calibrate your Infiniium, the input to each channel, in turn, is
connected to the Aux Out connector. The Aux Out is connected to a 16-bit
digital-to-analog convertor (DAC) whose input is controlled by Infiniium’s CPU.
There are 65,536 dc voltage levels that are produced by the 16-bit DAC at the
Aux Out. At each dc voltage value, the output of the ADC is checked to see if
a new digital code is produced. When this happens, a 16-bit correction factor
is calculated for that digital code and this correction factor is stored in a
Calibration Look-up Table.

Figure 28-3

Data Flow in Infiniium

This process continues until all 256 digital codes are calibrated. The calibration
process removes most of the non-linearity error of the ADC which yields more
accurate vertical voltage values.

During normal operation of the oscilloscope, the output of the ADC is used as
an address to the Calibration Look-up Table which produces 16-bit data for the
oscilloscope to process and display. The output of the ADC is a signed 8-bit
integer and the output of the Calibration Look-up Table is a signed 16-bit integer.
If the amplitude of the input waveform is larger than the maximum dc reference
level of the ADC, the ADC will output the maximum 8-bit value that it can (255).
This condition is called ADC clipping. When the 255 digital code is applied to
the Calibration Look-up Table, a 16-bit value, such as 26,188 could be produced
which represents an ADC clipped value. This number will vary from one
oscilloscope to the next.

D0

D1

D2

D3

D4

D5

D6

D7

Calibration
Digital

to
Analog

Converter

CPU
Aux Out

Channel In
Analog

to
Digital

Converter

Calibration
Look-up

Table 16 bits

16 bits

16 bits

8 bits

ASCII
Format

WORD
Format

BYTE
Format

Stream of
8 bit

Characters

28-40

Waveform Commands
DATA? Example for Digital Channels

WORD and BYTE
Data Formats

When downloading the waveform data in WORD format, the 16-bit signed
integer value for each data point is sent in two consecutive 8-bit bytes over
GPIB. Whether the least significant byte (LSB) or the most significant byte
(MSB) is sent first depends on the byte order determined by the BYTeorder
command.

Before downloading the waveform data in BYTE format, each 16-bit signed
integer is converted into an 8-bit signed integer. Because there are more
possible 16-bit integers than there are 8-bit integers, a range of 16-bit integers
is converted into single 8-bit numbers. For example, the following 16-bit
numbers are all converted into one 8-bit number.

This conversion is what makes the BYTE download format less accurate than
the WORD format.

16-bit integers

26,200

26,188

26,160

26,100

8-bit integer

104➱

28-41

Waveform Commands
FORMat

FORMat

Command :WAVeform:FORMat {ASCii | BINary | BYTE | WORD}

The :WAVeform:FORMat command sets the data transmission mode for
waveform data output. This command controls how the data is formatted when
it is sent from the oscilloscope, and pertains to all waveforms. The default
format is ASCii.

Selecting a Format

ASCii ASCii-formatted data consists of waveform data values converted to the
currently selected units, such as volts, and are output as a string of ASCII
characters with each value separated from the next value by a comma. The
values are formatted in floating point engineering notation. For example:

8.0836E+2,8.1090E+2,...,-3.1245E-3

The ASCii format does not send out the header information indicating the
number of bytes being downloaded.

In ASCii format:

• For analog channels, the value “99.999E+36” represents a hole value.
There are no hole values in the data for digital channels. A hole can occur
when you are using the equivalent time sampling mode when during a
single acquisition not all of the acquisition memory locations contain
sampled waveform data. It can take several acquisitions in the equivalent
time sampling mode to fill all of the memory locations.

Type Advantages Disadvantages

ASCii Data is returned as voltage values and does
not need to be converted and is as
accurate as WORD format.

Very slow data download rate.

BYTE Data download rate is twice as fast as the
WORD format.

Data is less accurate than the WORD
format for analog channels. Cannot be
used when PODALL is the selected
source.

WORD Data is the most accurate for analog
channels.

Data download rate takes twice as long
as the BYTE format

BINary This format can be used for analog
channels, digital channels (MSO
oscilloscopes only), and for HISTogram
source.

Data download rate takes twice as long
as the BYTE format for analog channels.

28-42

Waveform Commands
FORMat

BYTE BYTE-formatted data is formatted as signed 8-bit integers. If you use BASIC,
you need to create a function to convert these signed bits to signed integers.
In BYTE format:

• The value 125 represents a hole value. A hole can occur when you are
using the equivalent time sampling mode when during a single acquisition
not all of the acquisition memory locations contain sampled waveform
data. It can take several acquisitions in the equivalent time sampling mode
to fill all of the memory locations.

The waveform data values are converted from 16-bit integers to 8-bit integers
before being downloaded to the computer. For more information see
“Understanding WORD and BYTE Formats” on page 28-37.

WORD WORD-formatted data is transferred as signed 16-bit integers in two bytes. If
:WAVeform:BYTeorder is set to MSBFirst, the most significant byte of each word
is sent first. If the BYTeorder is LSBFirst, the least significant byte of each word
is sent first. In WORD format:

• For analog channels, the value 31232 represents a hole level. There are
no hole values in the data for digital channels. A hole can occur when you
are using the equivalent time sampling mode and during a single
acquisition not all of the acquisition memory locations contain sampled
waveform data. It can take several acquisitions in the equivalent time
sampling mode to fill all of the memory locations.

For more information see “Understanding WORD and BYTE Formats” on page
28-37.

BINary BINary-formatted data can be used with any SOURce. When a source is any
valid source except for histogram, the data is return in WORD format.

For digital channels, if the source is pod1 or pod2 the data is in BYTE format.
If the source is podall the dat is in WORD format.

When the source is set to HISTogram, the data is transferred as signed 32-bit
integers in four bytes. The are no hole values in the histogram data.

If :WAVeform:BYTeorder is set to MSBFirst, the most significant byte of each
long word is sent first. If the BYTeorder is LSBFirst, the least significant byte
of each long word is sent first.

Example This example selects the WORD format for waveform data transmission.
10 OUTPUT 707;":WAVEFORM:FORMAT WORD"
20 END

If PODALL is the source, the byte format will produce an error.

28-43

Waveform Commands
FORMat

Query :WAVeform:FORMat?

The :WAVeform:FORMat? query returns the current output format for
transferring waveform data.

Returned Format [:WAVeform:FORMat] {ASCii | BINary | BYTE | WORD}<NL>

Example This example places the current output format for data transmission in the
string variable, Mode$, then prints the contents of the variable to the computer's
screen.
10 DIM Mode$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:FORMAT?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

28-44

Waveform Commands
POINts?

POINts?

Query :WAVeform:POINts?

The :WAVeform:POINts? query returns the points value in the current waveform
preamble. The points value is the number of time buckets contained in the
waveform selected with the :WAVeform:SOURce command.

Returned Format [:WAVeform:POINts] <points><NL>

<points> An integer. See the :ACQuire:POINts command for a table of possible values.

Example This example places the current acquisition length in the numeric variable,
Length, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:POINTS?"
30 ENTER 707;Length
40 PRINT Length
50 END

See Also The :ACQuire:POINts command in the ACQuire Commands chapter.

Turn Headers Off

When you are receiving numeric data into numeric variables, you should turn the
headers off. Otherwise, the headers may cause misinterpretation of returned data.

28-45

Waveform Commands
PREamble

PREamble

Query :WAVeform:PREamble?

The :WAVeform:PREamble? query outputs a waveform preamble to the
computer from the waveform source, which can be a waveform memory or
channel buffer.

Returned Format [:WAVeform:PREamble] <preamble_data><NL>

The preamble can be used to translate raw data into time and voltage values.
The following lists the elements in the preamble.

<preamble_
data>

<format>, <type>, <points>, <count> ,
<X increment>, <X origin>, < X reference>,
<Y increment>, <Y origin>, <Y reference>,
<coupling>,
<X display range>, <X display origin>,
<Y display range>, <Y display origin>,
<date>, <time>,
<frame model #>,
<acquisition mode>, <completion>,
<X units>, <Y units>,
<max bandwidth limit>, <min bandwidth limit>

<format> 0 for ASCii format.
1 for BYTE format.
2 for WORD format.
3 for LONG format.

<type> 1 RAW type.
2 AVERage type.
3 not used.
4 not used.
5 not used.
6 INTERPOLATE type.
7 not used.
8 not used.
9 DIGital.
10 PDETect.

<points> The number of data points or data pairs contained in the waveform data.
(See :ACQuire:POINts.)

28-46

Waveform Commands
PREamble

<count or
segments>

For the AVERAGE waveform type, the count value is the fewest number of hits
for all time buckets. This value may be less than or equal to the value requested
with the :ACQuire:AVERage:COUNt command. For NORMAL, RAW,
INTERPOLATE, and VERSUS waveform types, this value is 0 or 1. The count
value is ignored when it is sent to the oscilloscope in the preamble.
(See :WAVeform:TYPE and :ACQuire:COUNt.)

Segments is used instead of Count when the data is acquired using the
Segmented acquisition mode. This number is the total number of segments that
were acquired.

<X increment> The X increment is the duration between data points on the X axis. For time
domain waveforms, this is the time between points. If the value is zero then no
data has been acquired.
(See the :WAVeform:XINCrement? query.)

<X origin> The X origin is the X-axis value of the first data point in the data record. For
time domain waveforms, it is the time of the first point. This value is treated as
a double precision 64-bit floating point number. If the value is zero then no
data has been acquired.
(See the :WAVeform:XORigin? query.)

<X reference> The X reference is the data point associated with the X origin. It is at this data
point that the X origin is defined. In this oscilloscope, the value is always zero.
(See the :WAVeform:XREFerence? query.)

<Y increment> The Y increment is the duration between Y-axis levels. For voltage waveforms,
it is the voltage corresponding to one level. If the value is zero then no data
has been acquired.
(See the :WAVeform:YINCrement? query.)

<Y origin> The Y origin is the Y-axis value at level zero. For voltage waveforms, it is the
voltage at level zero. If the value is zero then no data has been acquired.
(See the :WAVeform:YORigin? query.)

<Y reference> The Y reference is the level associated with the Y origin. It is at this level that
the Y origin is defined. In this oscilloscope, this value is always zero.
(See the :WAVeform:YREFerence? query.)

<coupling> 0 for AC coupling.
1 for DC coupling.
2 for DCFIFTY coupling.
3 for LFREJECT coupling.

<X display
range>

The X display range is the X-axis duration of the waveform that is displayed.
For time domain waveforms, it is the duration of time across the display. If the
value is zero then no data has been acquired.
(See the :WAVeform:XRANge? query.)

28-47

Waveform Commands
PREamble

<X display
origin>

The X display origin is the X-axis value at the left edge of the display. For time
domain waveforms, it is the time at the start of the display. This value is treated
as a double precision 64-bit floating point number. If the value is zero then no
data has been acquired.
(See the :WAVeform:XDISplay? query.)

<Y display
range>

The Y display range is the Y-axis duration of the waveform which is displayed.
For voltage waveforms, it is the amount of voltage across the display. If the
value is zero then no data has been acquired.
(See the :WAVeform:YRANge? query.)

<Y display
origin>

The Y-display origin is the Y-axis value at the center of the display. For voltage
waveforms, it is the voltage at the center of the display. If the value is zero
then no data has been acquired.
(See the :WAVeform:YDISplay? query.)

<date> A string containing the date in the format DD MMM YYYY, where DD is the day,
1 to 31; MMM is the month; and YYYY is the year.

<time> A string containing the time in the format HH:MM:SS:TT, where HH is the hour,
0 to 23, MM is the minutes, 0 to 59, SS is the seconds, 0 to 59, and TT is the
hundreds of seconds, 0 to 99.

<frame_
model_#>

A string containing the model number and serial number of the oscilloscope in
the format of MODEL#:SERIAL#.

<acquisition
_mode>

0 for RTIMe mode.
1 for ETIMe mode.
2 not used.
3 for PDETect.

<completion> The completion value is the percent of time buckets that are complete. The
completion value is ignored when it is sent to the oscilloscope in the preamble.
(See the :WAVeform:COMPlete? query.)

<x_units>
<y_units>

0 for UNKNOWN units.
1 for VOLT units.
2 for SECOND units.
3 for CONSTANT units.
4 for AMP units.
5 for DECIBEL units.

<max bandwidth
limit>

<min bandwidth
limit>

The band pass consists of two values that are an estimation of the maximum
and minimum bandwidth limits of the source waveform. The bandwidth limit
is computed as a function of the selected coupling and filter mode.
(See the :WAVeform:BANDpass? query.)

28-48

Waveform Commands
PREamble

See Table 28-1 for descriptions of all the waveform preamble elements.

Example This example outputs the current waveform preamble for the selected source
to the string variable, Preamble$.
10 DIM Preamble$[250]!Dimension variable
20 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
30 OUTPUT 707;":WAVEFORM:PREAMBLE?"
40 ENTER 707 USING "-K";Preamble$
50 END

HP BASIC Image Specifiers

is an HP BASIC image specifier that suppresses the automatic output of the EOL
sequence following the last output item.

K is an HP BASIC image specifier that outputs a number or string in standard form
with no leading or trailing blanks.

Placing the Block in a String

-K is an HP BASIC image specifier that places the block data in a string, including
carriage returns and line feeds, until EOI is true, or when the dimensioned length of
the string is reached.

28-49

Waveform Commands
PREamble

Table 28-1 Waveform Preamble Elements

Element Description
Format The format value describes the data transmission mode for waveform data

output. This command controls how the data is formatted when it is sent
from the oscilloscope. (See :WAVeform:FORMat.)

Type This value describes how the waveform was acquired.
(See also the :WAVeform:TYPE? query.)

Points The number of data points or data pairs contained in the waveform data.
(See :ACQuire:POINts.)

Count or Segments For the AVERAGE waveform type, the count value is the minimum count or
fewest number of hits for all time buckets. This value may be less than or
equal to the value requested with the :ACQuire:AVERage:COUNt command.
For NORMAL, RAW, INTERPOLATE, and VERSUS waveform types, this value
is 0 or 1. The count value is ignored when it is sent to the oscilloscope in the
preamble. (See :WAVeform:TYPE and :ACQuire:COUNt.)
Segments is used instead of Count when the data is acquired using the
Segmented memory acquisition mode. This number is the total number of
segments that were acquired.

X Increment The X increment is the duration between data points on the X axis.
For time domain waveforms, this is the time between points.
(See the :WAVeform:XINCrement? query.)

X Origin The X origin is the X-axis value of the first data point in the data record.
For time domain waveforms, it is the time of the first point. This value is
treated as a double precision 64-bit floating point number.
(See the :WAVeform:XORigin? query.)

X Reference The X reference is the data point associated with the X origin. It is at this
data point that the X origin is defined. In this oscilloscope, the value is
always zero. (See the :WAVeform:XREFerence? query.)

Y Increment The Y increment is the duration between Y-axis levels. For voltage
waveforms, it is the voltage corresponding to one level.
(See the :WAVeform:YINCrement? query.)

Y Origin The Y origin is the Y-axis value at level zero. For voltage waveforms, it is the
voltage at level zero. (See the :WAVeform:YORigin? query.)

Y Reference The Y reference is the level associated with the Y origin. It is at this level
that the Y origin is defined. In this oscilloscope, this value is always zero.
(See the :WAVeform:YREFerence? query.)

Coupling The input coupling of the waveform. The coupling value is ignored when
sent to the oscilloscope in the preamble. (See the :WAVeform:COUPling?
query.)

X Display Range The X display range is the X-axis duration of the waveform that is displayed.
For time domain waveforms, it is the duration of time across the display.
(See the :WAVeform:XRANge? query.)

28-50

Waveform Commands
PREamble

See Also :WAVeform:DATA?

X Display Origin The X display origin is the X-axis value at the left edge of the display.
For time domain waveforms, it is the time at the start of the display.
This value is treated as a double precision 64-bit floating point number.
(See the :WAVeform:XDISplay? query.)

Y Display Range The Y display range is the Y-axis duration of the waveform which is displayed.
For voltage waveforms, it is the amount of voltage across the display. (See
the :WAVeform:YRANge? query.)

Y Display Origin The Y-display origin is the Y-axis value at the center of the display.
For voltage waveforms, it is the voltage at the center of the display.
(See the :WAVeform:YDISplay? query.)

Date The date that the waveform was acquired or created.
Time The time that the waveform was acquired or created.
Frame Model # The model number of the frame that acquired or created this waveform.

The frame model number is ignored when it is sent to an oscilloscope in the
preamble.

Acquisition Mode The acquisition sampling mode of the waveform. (See :ACQuire:MODE.)
Complete The complete value is the percent of time buckets that are complete. The

complete value is ignored when it is sent to the oscilloscope in the preamble.
(See the :WAVeform:COMPlete? query.)

X Units The X-axis units of the waveform. (See the :WAVeform:XUNits? query.)
Y Units The Y-axis units of the waveform. (See the :WAVeform:YUNits? query.)
Band Pass The band pass consists of two values that are an estimation of the maximum

and minimum bandwidth limits of the source waveform. The bandwidth limit
is computed as a function of the selected coupling and filter mode.
(See the :WAVeform:BANDpass? query.)

Element Description

28-51

Waveform Commands
SEGMented:COUNt?

SEGMented:COUNt?

Query :WAVeform:SEGMented:COUNt?

The :WAVeform:SEGMented:COUNt? query returns the index number of the
last captured segment. A return value of zero indicates that the :ACQuire:MODE
is not set to SEGMented.

<index_number> An integer number representing the index value of the last segment.

Returned Format [:WAVeform:SEGMented:COUNt] <index_number><NL>

Example This example returns the number of the last segment that was captured in the
paramenter Index and prints it to the computer screen.
10 OUTPUT 707;":WAVEFORM:SEGMENTED:COUNT?"
20 ENTER 707;Index
30 PRINT Index
40 END

28-52

Waveform Commands
SEGMented:TTAG?

SEGMented:TTAG?

Query :WAVeform:SEGMented:TTAG?

The :WAVeform:SEGMented:TTAG? query returns the time difference between
the first segment's trigger point and the trigger point of the currently displayed
segment.

<delta_time> A real number in exponential format representing the time value difference
between the first segment’s trigger point and the currently displayed segment.

Returned Format [:WAVeform:SEGMented:TTAG] <delta_time><NL>

Example This example returns the time from the first segment’s trigger point and the
currently displayed segment’s trigger point in the paramenter dtime and prints
it to the computer screen.
10 OUTPUT 707;":WAVEFORM:SEGMENTED:TTAG?"
20 ENTER 707;dtime
30 PRINT dtime
40 END

28-53

Waveform Commands
SOURce

SOURce

Command :WAVeform:SOURce {CHANnel<N> | FUNCtion<N> |
HISTogram | POD1 | POD2 | PODALL | WMEMory<N>}

The :WAVeform:SOURce command selects a channel, function, waveform
memory, digital channels, or histogram as the waveform source.

<N> CHANnel<N> is:

An integer, 1 - 2, for 2 channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

POD1 Bits 0 through 7 of the digital channels only available on the MSO Infiniium
oscilloscopes.

POD2 Bits 8 through 15 of the digital channels only available on the MSO Infiniium
oscilloscopes.

PODALL Bits 0 through 15 of the digital channels only available on the MSO Infiniium
oscilloscopes.

Example This example selects channel 1 as the waveform source.
10 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"
20 END

28-54

Waveform Commands
SOURce

Query :WAVeform:SOURce?

The :WAVeform:SOURce? query returns the currently selected waveform
source.

Returned Format [:WAVeform:SOURce] {CHANnel<N> | FUNCtion<N> | HISTogram |
POD1 |POD2 | PODALL | WMEMory<N>}<NL>

Example This example places the current selection for the waveform source in the string
variable, Selection$, then prints the contents of the variable to the computer's
screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

28-55

Waveform Commands
TYPE?

TYPE?

Query :WAVeform:TYPE?

The :WAVeform:TYPE? query returns the current acquisition data type for the
currently selected source. The type returned describes how the waveform was
acquired. The waveform type may be RAW, INTerpolate, AVERage,
HHIStogram, PDETect, DIGital, or VHISTogram.

RAW RAW data consists of one data point in each time bucket with no interpolation.

INTerpolate In the INTerpolate acquisition type, the last data point in each time bucket is
stored, and additional data points between the acquired data points are filled
by interpolation.

AVERage AVERage data consists of the average of the first n hits in a time bucket, where
n is the value in the count portion of the preamble. Time buckets that have
fewer than n hits return the average of the data they contain. If the
:ACQuire:COMPlete parameter is set to 100%, then each time bucket must
contain the number of data hits specified with the :ACQuire:AVERage:COUNt
command.

PDETect PDETect data consists of two data points in each time bucket: the miniumum
values and the maximum values.

DIGital DIGital data consists of 8 digital data bits if POD1 or POD2 are the selected
sources. If PODALL is the selected source then the data consists of 16 data
bitsfor each time bucket.

Returned Format [:WAVeform:TYPE] {RAW | INTerpolate | AVERage |
PDETect | DIGital}<NL>

28-56

Waveform Commands
TYPE?

Example This example places the current acquisition data type in the string variable,
Type$, then prints the contents of the variable to the computer's screen.
10 DIM Type$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:TYPE?"
30 ENTER 707;Type$
40 PRINT Type$
50 END

28-57

Waveform Commands
VIEW

VIEW

Command :WAVeform:VIEW {ALL | MAIN | WINDow}

The :WAVeform:VIEW command selects which view of the waveform is selected
for data and preamble queries. You can set the command to ALL, MAIN, or
WINDow. The view has different meanings depending upon the waveform
source selected. The default setting for this command is ALL.

Channels For channels, you may select ALL, MAIN, or WINDow views. If you select ALL,
all of the data in the waveform record is referenced. If you select MAIN, only
the data in the main time base range is referenced. The first value corresponds
to the first time bucket in the main time base range, and the last value
corresponds to the last time bucket in the main time base range. If WINDow is
selected, only data in the delayed view is referenced. The first value
corresponds to the first time bucket in the delayed view and the last value
corresponds to the last time bucket in the delayed view.

Memories For memories, if you specify ALL, all the data in the waveform record is
referenced. WINDow and MAIN refer to the data contained in the memory time
base range for the particular memory. The first value corresponds to the first
time bucket in the memory time base range, and the last value corresponds to
the last time bucket in the memory time base range.

Functions For functions, ALL, MAIN, and WINDow refer to all of the data in the waveform
record.

Table 28-2 summarizes the parameters for this command for each source.

Example This example sets up the oscilloscope to view all of the data.
10 OUTPUT 707;":WAVEFORM:VIEW ALL"
20 END

28-58

Waveform Commands
VIEW

Table 28-2 Waveform View Parameters

Query :WAVeform:VIEW?

The :WAVeform:VIEW? query returns the currently selected view.

Returned Format [:WAVeform:VIEW] {ALL | MAIN | WINDow}<NL>

Example This example returns the current view setting to the string variable, Setting$,
then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:VIEW?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

Source/Parameter ALL MAIN WINDow

CHANNEL All data Main time base Delayed time base

MEMORY All data Memory time base Memory time base

FUNCTION All data All data All data

28-59

Waveform Commands
XDISplay?

XDISplay?

Query :WAVeform:XDISplay?

The :WAVeform:XDISplay? query returns the X-axis value at the left edge of the
display. For time domain waveforms, it is the time at the start of the display.
For VERSus type waveforms, it is the value at the center of the X-axis of the
display. This value is treated as a double precision 64-bit floating point number.

Returned Format [:WAVeform:XDISplay] <value><NL>

<value> A real number representing the X-axis value at the left edge of the display.

Example This example returns the X-axis value at the left edge of the display to the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XDISPLAY?"
30 ENTER 707;Value
40 PRINT Value
50 END

A “Waveform data is not valid” error occurs when there is no data available for a
channel. When this occurs, a zero value is returned.

28-60

Waveform Commands
XINCrement?

XINCrement?

Query :WAVeform:XINCrement?

The :WAVeform:XINCrement? query returns the duration between consecutive
data points for the currently specified waveform source. For time domain
waveforms, this is the time difference between consecutive data points. For
VERSus type waveforms, this is the duration between levels on the X axis. For
voltage waveforms, this is the voltage corresponding to one level.

Returned Format [:WAVeform:XINCrement] <value><NL>

<value> A real number representing the duration between data points on the X axis.

Example This example places the current X-increment value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XINCREMENT?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the X-increment value through the :WAVeform:PREamble?
query.

A “Waveform data is not valid” error occurs when there is no data available for a
channel. When this occurs, a zero value is returned.

28-61

Waveform Commands
XORigin?

XORigin?

Query :WAVeform:XORigin?

The :WAVeform:XORigin? query returns the X-axis value of the first data point
in the data record. For time domain waveforms, it is the time of the first point.
For VERSus type waveforms, it is the X-axis value at level zero. For voltage
waveforms, it is the voltage at level zero. The value returned by this query is
treated as a double precision 64-bit floating point number.

Returned Format [:WAVeform:XORigin] <value><NL>

<value> A real number representing the X-axis value of the first data point in the data
record.

Example This example places the current X-origin value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XORIGIN?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the X-origin value through the :WAVeform:PREamble? query.

A “Waveform data is not valid” error occurs when there is no data available for a
channel. When this occurs, a zero value is returned.

28-62

Waveform Commands
XRANge?

XRANge?

Query :WAVeform:XRANge?

The :WAVeform:XRANge? query returns the X-axis duration of the displayed
waveform. For time domain waveforms, it is the duration of the time across the
display. For VERSus type waveforms, it is the duration of the waveform that is
displayed on the X axis.

Returned Format [:WAVeform:XRANge] <value><NL>

<value> A real number representing the X-axis duration of the displayed waveform.

Example This example returns the X-axis duration of the displayed waveform to the
numeric variable, Value, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XRANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

A “Waveform data is not valid” error occurs when there is no data available for a
channel. When this occurs, a zero value is returned.

28-63

Waveform Commands
XREFerence?

XREFerence?

Query :WAVeform:XREFerence?

The :WAVeform:XREFerence? query returns the data point or level associated
with the X-origin data value. It is at this data point or level that the X origin is
defined. In this oscilloscope, the value is always zero.

Returned Format [:WAVeform:XREFerence] 0<NL>

Example This example places the current X-reference value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XREFERENCE?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the X-reference value through the :WAVeform:PREamble? query.

28-64

Waveform Commands
XUNits?

XUNits?

Query :WAVeform:XUNits?

The :WAVeform:XUNits? query returns the X-axis units of the currently selected
waveform source. The currently selected source may be a channel, function,
or waveform memory.

Returned Format [:WAVeform:XUNits] {UNKNown | VOLT | SECond | CONStant | AMP
| DECibels | HERTz | WATT}<NL>

Example This example returns the X-axis units of the currently selected waveform source
to the string variable, Unit$, then prints the contents of the variable to the
computer's screen.
10 DIM Unit$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:XUNITS?"
30 ENTER 707;Unit$
40 PRINT Unit$
50 END

28-65

Waveform Commands
YDISplay?

YDISplay?

Query :WAVeform:YDISplay?

The :WAVeform:YDISplay? query returns the Y-axis value at the center of the
display. For voltage waveforms, it is the voltage at the center of the display.

Returned Format [:WAVeform:YDISplay] <value><NL>

<value> A real number representing the Y-axis value at the center of the display.

Example This example returns the current Y-display value to the numeric variable, Value,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;"":WAVEFORM:YDISPLAY?"
30 ENTER 707;Value
40 PRINT Value
50 END

A “Waveform data is not valid” error occurs when there is no data available for a
channel. When this occurs, a zero value is returned.

28-66

Waveform Commands
YINCrement?

YINCrement?

Query :WAVeform:YINCrement?

The :WAVeform:YINCrement? query returns the y-increment voltage value for
the currently specified source. This voltage value is the voltage difference
between two adjacent waveform data digital codes. Adjacent digital codes are
codes that differ by one least significant bit. For example, the digital codes
24680 and 24681 vary by one least significant bit.

• For BYTE and WORD data, and voltage waveforms, it is the voltage
corresponding to one least significant bit change.

• For ASCii data format, the YINCrement is the full scale voltage range
covered by the A/D converter.

Returned Format [:WAVeform:YINCrement] <real_value><NL>

<real_value> A real number in exponential format.

Example This example places the current Y-increment value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:YINCREMENT?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also For more information on BYTE and WORD formats see “Understanding WORD
and BYTE Formats” on page 28-37.

You can also obtain the Y-increment value through the :WAVeform:PREamble?
query.

A “Waveform data is not valid” error occurs when there is no data available for a
channel. When this occurs, a zero value is returned.

28-67

Waveform Commands
YORigin?

YORigin?

Query :WAVeform:YORigin?

The :WAVeform:YORigin? query returns the y-origin voltage value for the
currently specified source. The voltage value returned is the voltage value
represented by the waveform data digital code 00000.

• For BYTE and WORD data, and voltage waveforms, it is the voltage at
digital code zero.

• For ASCii data format, the YORigin is the Y-axis value at the center of the
data range. Data range is returned in the Y increment.

Returned Format [:WAVeform:YORigin] <real_value><NL>

<real_value> A real number in exponential format.

Example This example places the current Y-origin value in the numeric variable, Center,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:YORIGIN?"
30 ENTER 707;Center
40 PRINT Center
50 END

See Also For more information on BYTE and WORD formats see “Understanding WORD
and BYTE Formats” on page 28-37.

You can obtain the Y-origin value through the :WAVeform:PREamble? query.

A “Waveform data is not valid” error occurs when there is no data available for a
channel. When this occurs, a zero value is returned.

28-68

Waveform Commands
YRANge?

YRANge?

Query :WAVeform:YRANge?

The :WAVeform:YRANge? query returns the Y-axis duration of the displayed
waveform. For voltage waveforms, it is the voltage across the entire display.

Returned Format [:WAVeform:YRANge] <value><NL>

<value> A real number representing the Y-axis duration of the displayed waveform.

Example This example returns the current Y-range value to the numeric variable, Value,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:YRANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

A “Waveform data is not valid” error occurs when there is no data available for a
channel. When this occurs, a zero value is returned.

28-69

Waveform Commands
YREFerence?

YREFerence?

Query :WAVeform:YREFerence?

The :WAVeform:YREFerence? query returns the y-reference voltage value for
the currently specified source. It is at this level that the Y origin is defined. In
this oscilloscope, the value is always zero.

Returned Format [:WAVeform:YREFerence] 0<NL>>

Example This example places the current Y-reference value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:YREFERENCE?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also For more information on BYTE and WORD formats see “Understanding WORD
and BYTE Formats” on page 28-37.

You can obtain the Y-reference value through the :WAVeform:PREamble? query.

28-70

Waveform Commands
YUNits?

YUNits?

Query :WAVeform:YUNits?

The :WAVeform:YUNits? query returns the Y-axis units of the currently selected
waveform source. The currently selected source may be a channel, function,
or waveform memory.

Returned Format [:WAVeform:YUNits] {UNKNown | VOLT | SECond | HITS | DECibels
| CONStant | AMP}<NL>

Example This example returns the Y-axis units of the currently selected waveform source
to the string variable, Unit$, then prints the contents of the variable to the
computer's screen.
10 DIM Unit$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:YUNITS?"
30 ENTER 707;Unit$
40 PRINT Unit$
50 END

29

Waveform Memory Commands

29-2

Waveform Memory Commands

The Waveform Memory Subsystem commands let you save and display
waveforms, memories, and functions. These Waveform Memory
commands and queries are implemented in the Infiniium Oscilloscopes:

• DISPlay
• LOAD
• SAVE
• XOFFset
• XRANge
• YOFFset
• YRANge

<N> in WMEMory<N> Indicates the Waveform Memory Number

In Waveform Memory commands, the <N> in WMEMory<N> represents the
waveform memory number (1-4).

29-3

Waveform Memory Commands
DISPlay

DISPlay

Command :WMEMory<N>:DISPlay {{ON|1} | {OFF|0}}

The :WMEMory<N>:DISPlay command enables or disables the viewing of the
selected waveform memory.

<N> The memory number is an integer from 1 to 4.

Example This example turns on the waveform memory 1 display.
10 OUTPUT 707;":WMEMORY1:DISPLAY ON"
20 END

Query :WMEMory<N>:DISPlay?

The :WMEMory<N>:DISPlay? query returns the state of the selected waveform
memory.

Returned Format [:WMEMory<N>:DISPlay] {1 | 0}<NL>

29-4

Waveform Memory Commands
LOAD

LOAD

Command :WMEMory<N>:LOAD <file_name>

The :WMEMory<N>:LOAD command loads an oscilloscope waveform memory
location with a waveform from a file that has an internal waveform format
(extension .wfm), comma separated xypairs, (extension .csv), tab separated
xypairs (extension .tsv), and yvalues text (extension .txt). You can load the
file from either the c: or a: drive, or any lan connected drive. See the examples
below.

The oscilloscope assumes that the default path for waveforms is c:\scope\data.
To use a different path, specify the path and file name completely.

<N> The memory number is an integer from 1 to 4.

<file_name> A quoted string which specifies the file to load, and has a .wfm, .csv, .tsv, or .txt
extension.

Examples This example loads waveform memory 4 with a file.
10 OUTPUT 707;":WMEMORY4:LOAD ""c:\scope\data\waveform.wfm"""
20 END

This example loads waveform memory 3 with a file that has the internal
waveform format and is stored on the floppy drive.
10 OUTPUT 707;":WMEMORY3:LOAD ""a:\waveform.wfm"""
20 END

Related Commands :DISK:LOAD
:DISK:STORe

29-5

Waveform Memory Commands
SAVE

SAVE

Command :WMEMory<N>:SAVE {CHANnel<N> | WMEMory<N> |
FUNCtion<N>}

The :WMEMory<N>:SAVE command stores the specified channel, waveform
memory, or function to the waveform memory. You can save waveforms to
waveform memories regardless of whether the waveform memory is displayed
or not.

<N> CHANnel<N> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

Example This example saves channel 1 to waveform memory 4.
10 OUTPUT 707;":WMEMORY4:SAVE CHANNEL1"
20 END

29-6

Waveform Memory Commands
XOFFset

XOFFset

Command :WMEMory<N>:XOFFset <offset_value>

The :WMEMory<N>:XOFFset command sets the x-axis, horizontal position for
the selected waveform memory's display scale. The position is referenced to
center screen.

<N> The memory number is an integer from 1 to 4.

<offset_value> A real number for the horizontal offset (position) value.

Example This example sets the X-axis, horizontal position for waveform memory 3 to 0.1
seconds (100 ms).
10 OUTPUT 707;":WMEMORY3:XOFFSET 0.1"
20 END

Query :WMEMory<N>:XOFFset?

The :WMEMory<N>:XOFFset? query returns the current X-axis, horizontal
position for the selected waveform memory.

Returned Format [:WMEMory<N>:XOFFset] <offset_value><NL>

29-7

Waveform Memory Commands
XRANge

XRANge

Command :WMEMory<N>:XRANge <range_value>

The :WMEMory<N>:XRANge command sets the X-axis, horizontal range for the
selected waveform memory's display scale. The horizontal scale is the
horizontal range divided by 10.

<N> The memory number is an integer from 1 to 4.

<range_value> A real number for the horizontal range value.

Example This example sets the X-axis, horizontal range of waveform memory 2 to
435 microseconds.
10 OUTPUT 707;":WMEMORY2:XRANGE 435E-6"
20 END

Query :WMEMory<N>:XRANge?

The :WMEMory<N>:XRANge? query returns the current X-axis, horizontal
range for the selected waveform memory.

Returned Format [:WMEMory<N>:XRANge] <range_value><NL>

29-8

Waveform Memory Commands
YOFFset

YOFFset

Command :WMEMory<N>:YOFFset <offset_value>

The :WMEMory<N>:YOFFset command sets the Y-axis (vertical axis) offset for
the selected waveform memory.

<N> The memory number is an integer from 1 to 4.

<offset_value> A real number for the vertical offset value.

Example This example sets the Y-axis (vertical) offset of waveform memory 2 to 0.2V.
10 OUTPUT 707;":WMEMORY2:YOFFSET 0.2"
20 END

Query :WMEMory<N>:YOFFset?

The :WMEMory<N>:YOFFset? query returns the current Y-axis (vertical) offset
for the selected waveform memory.

Returned Format [:WMEMory<N>:YOFFset] <offset_value><NL>

29-9

Waveform Memory Commands
YRANge

YRANge

Command :WMEMory<N>:YRANge <range_value>

The :WMEMory<N>:YRANge command sets the Y-axis, vertical range for the
selected memory. The vertical scale is the vertical range divided by 8.

<N> The memory number is an integer from 1 to 4.

<range_value> A real number for the vertical range value.

Example This example sets the Y-axis (vertical) range of waveform memory 3 to 0.2 volts.
10 OUTPUT 707;":WMEMORY3:YRANGE 0.2"
20 END

Query :WMEMory<N>:YRANge?

The :WMEMory<N>:YRANge? query returns the Y-axis, vertical range for the
selected memory.

Returned Format [:WMEMory<N>:YRANge]<range_value><NL>

29-10

30

Error Messages

30-2

Error Messages

This chapter describes the error messages and how they are generated.
The possible causes for the generation of the error messages are also
listed in the following table.

30-3

Error Messages
Error Queue

Error Queue

As errors are detected, they are placed in an error queue. This queue is first in,
first out. If the error queue overflows, the last error in the queue is replaced
with error -350, “Queue overflow.” Anytime the error queue overflows, the
oldest errors remain in the queue, and the most recent error is discarded. The
length of the oscilloscope's error queue is 30 (29 positions for the error
messages, and 1 position for the “Queue overflow” message). Reading an error
from the head of the queue removes that error from the queue, and opens a
position at the tail of the queue for a new error. When all errors have been read
from the queue, subsequent error queries return 0, “No error.”

The error queue is cleared when any of the following occur:

• the instrument is powered up,

• a *CLS command is sent,

• the last item from the queue is read, or

• the instrument is switched from talk only to addressed mode on the front
panel.

30-4

Error Messages
Error Numbers

Error Numbers

The error numbers are grouped according to the type of error that is detected.

• +0 indicates no errors were detected.

• -100 to -199 indicates a command error was detected

• -200 to -299 indicates an execution error was detected.

• -300 to -399 indicates a device-specific error was detected.

• -400 to -499 indicates a query error was detected.

• +1 to +32767 indicates an oscilloscope specific error has been detected.

30-5

Error Messages
Command Error

Command Error

An error number in the range -100 to -199 indicates that an IEEE 488.2 syntax
error has been detected by the instrument's parser. The occurrence of any error
in this class sets the command error bit (bit 5) in the event status register and
indicates that one of the following events occurred:

• An IEEE 488.2 syntax error was detected by the parser. That is, a computer-
to-oscilloscope message was received that is in violation of the IEEE 488.2
standard. This may be a data element that violates the oscilloscope's listening
formats, or a data type that is unacceptable to the oscilloscope.

• An unrecognized header was received. Unrecognized headers include
incorrect oscilloscope-specific headers and incorrect or unimplemented
IEEE 488.2 common commands.

• A Group Execute Trigger (GET) was entered into the input buffer inside of
an IEEE 488.2 program message.

Events that generate command errors do not generate execution errors,
oscilloscope-specific errors, or query errors.

30-6

Error Messages
Execution Error

Execution Error

An error number in the range -200 to -299 indicates that an error was detected
by the instrument's execution control block. The occurrence of any error in this
class causes the execution error bit (bit 4) in the event status register to be set.
It also indicates that one of the following events occurred:

• The program data following a header is outside the legal input range or is
inconsistent with the oscilloscope's capabilities.

• A valid program message could not be properly executed due to some
oscilloscope condition.

Execution errors are reported by the oscilloscope after expressions are
evaluated and rounding operations are completed. For example, rounding a
numeric data element will not be reported as an execution error. Events that
generate execution errors do not generate command errors, oscilloscope
specific errors, or query errors.

30-7

Error Messages
Device- or Oscilloscope-Specific Error

Device- or Oscilloscope-Specific Error

An error number in the range of -300 to -399 or +1 to +32767 indicates that the
instrument has detected an error caused by an oscilloscope operation that did
not properly complete. This may be due to an abnormal hardware or firmware
condition. For example, this error may be generated by a self-test response
error, or a full error queue. The occurrence of any error in this class causes the
oscilloscope-specific error bit (bit 3) in the event status register to be set.

30-8

Error Messages
Query Error

Query Error

An error number in the range -400 to -499 indicates that the output queue
control of the instrument has detected a problem with the message exchange
protocol. An occurrence of any error in this class should cause the query error
bit (bit 2) in the event status register to be set. An occurrence of an error also
means one of the following is true:

• An attempt is being made to read data from the output queue when no output
is either present or pending.

• Data in the output queue has been lost.

30-9

Error Messages
List of Error Messages

List of Error Messages

Figure 30-1 is a list of the error messages that are returned by the parser on
this oscilloscope.

Figure 30-1

Error Messages

0 No error The error queue is empty. Every error in the queue has been read (SYSTEM:ERROR?
query) or the queue was cleared by power-up or *CLS.

-100 Command error This is the generic syntax error used if the oscilloscope cannot detect more specific
errors.

-101 Invalid character A syntactic element contains a character that is invalid for that type.
-102 Syntax error An unrecognized command or data type was encountered.
-103 Invalid separator The parser was expecting a separator and encountered an illegal character.
-104 Data type error The parser recognized a data element different than one allowed. For example,

numeric or string data was expected but block data was received.
-105 GET not allowed A Group Execute Trigger was received within a program message.
-108 Parameter not allowed More parameters were received than expected for the header.
-109 Missing parameter Fewer parameters were received than required for the header.
-112 Program mnemonic too long The header or character data element contains more than twelve characters.
-113 Undefined header The header is syntactically correct, but it is undefined for the oscilloscope. For

example, *XYZ is not defined for the oscilloscope.
-121 Invalid character in number An invalid character for the data type being parsed was encountered. For example,

a “9” in octal data.
-123 Numeric overflow Number is too large or too small to be represented internally.
-124 Too many digits The mantissa of a decimal numeric data element contained more than 255 digits

excluding leading zeros.
-128 Numeric data not allowed A legal numeric data element was received, but the oscilloscope does not accept

one in this position for the header.
-131 Invalid suffix The suffix does not follow the syntax described in IEEE 488.2 or the suffix is

inappropriate for the oscilloscope.
-138 Suffix not allowed A suffix was encountered after a numeric element that does not allow suffixes.
-141 Invalid character data Either the character data element contains an invalid character or the particular

element received is not valid for the header.
-144 Character data too long
-148 Character data not allowed A legal character data element was encountered where prohibited by the

oscilloscope.
-150 String data error This error can be generated when parsing a string data element. This particular

error message is used if the oscilloscope cannot detect a more specific error.
-151 Invalid string data A string data element was expected, but was invalid for some reason. For example,

an END message was received before the terminal quote character.

30-10

Error Messages
List of Error Messages

-158 String data not allowed A string data element was encountered but was not allowed by the oscilloscope
at this point in parsing.

-160 Block data error This error can be generated when parsing a block data element. This particular
error message is used if the oscilloscope cannot detect a more specific error.

-161 Invalid block data
-168 Block data not allowed A legal block data element was encountered but was not allowed by the

oscilloscope at this point in parsing.
-170 Expression error This error can be generated when parsing an expression data element. It is used

if the oscilloscope cannot detect a more specific error.
-171 Invalid expression
-178 Expression data not allowed Expression data was encountered but was not allowed by the oscilloscope at this

point in parsing.
-200 Execution error This is a generic syntax error which is used if the oscilloscope cannot detect more

specific errors.
-212 Arm ignored
-213 Init ignored
-214 Trigger deadlock
-215 Arm deadlock
-220 Parameter error
-221 Settings conflict
-222 Data out of range Indicates that a legal program data element was parsed but could not be executed

because the interpreted value is outside the legal range defined by the
oscilloscope.

-223 Too much data Indicates that a legal program data element of block, expression, or string type was
received that contained more data than the oscilloscope could handle due to
memory or related oscilloscope-specific requirements.

-224 Illegal parameter value
-230 Data corrupt or stale
-231 Data questionable
-240 Hardware error
-241 Hardware missing
-250 Mass storage error
-251 Missing mass storage
-252 Missing media
-253 Corrupt media
-254 Media full
-255 Directory full
-256 File name not found
-257 File name error
-258 Media protected
-260 Expression error

30-11

Error Messages
List of Error Messages

-261 Math error in expression
-300 Device specific error
-310 System error Indicates that a system error occurred.
-311 Memory error
-312 PUD memory error
-313 Calibration memory lost
-314 Save/recall memory lost
-315 Configuration memory lost
-321 Out of memory
-330 Self-test failed
-350 Queue overflow Indicates that there is no room in the error queue and an error occurred but was

not recorded.
-370 No sub tests are defined for

the selected self test
-371 Self Test status is corrupt or

no self test has been
executed

-372 This product configuration
does not support the
requested self test

-373 This product configuration
does not support the
requested source

-374 The requested self test log
file could not be found

-375 Attenuator relay actuation
counts can only be modified
during factory service

-400 Query error This is the generic query error.
-410 Query INTERRUPTED
-420 Query UNTERMINATED
-430 Query DEADLOCKED
-440 Query UNTERMINATED

after indefinite response

30-12

Index

Index-1

Symbols

...
Ellipsis 1-5

Numerics

707 1-20
9.99999E+37

Infinity Representation 5-14

A

Aborting a digitize operation 2-10
aborting a digitize operation 1-18
absolute voltage

and VMAX 21-124
and VMIN 21-126

accuracy and probe calibration 9-4
Acquire Commands 7-2

AVERage 7-3
COMPlete 7-5
COMPlete STATe 7-7
COUNt 7-4
INTerpolate 7-8
MODE 7-9
POINts 7-11
POINts AUTO 7-21
SRATe 7-24
SRATe AUTO 7-26

acquisition
ACQuire AVER and completion 7-5
points 7-11
record length 7-11
sample program 6-7
sample rate 7-24

active probes and calibration 9-4
ADD 16-5
address, GPIB default 2-7
advanced

COMM triggering 27-25
delay trigger modes 27-45, 27-54
delay triggering 27-46, 27-55
logic triggering 27-32, 27-38
pattern triggering 27-33
state triggering 27-39
TV commands 27-61, 27-67

advanced trigger violation modes 27-73
pulse width violation mode 27-75
setup violation mode 27-81
transition violation mode 27-107

advisory line, reading and writing to 25-2
AER? 23-4, 23-5
algebraic sum of functions 16-5
ALIGn 20-4
AlignFIT 20-5
ALL, and VIEW 28-57
alphanumeric

characters in embedded string 1-13
strings 1-11

AMPS as vertical units 10-19, 10-28,
15-14, 15-20

AREA 17-3, 21-7
Arm Event Register

ARM bit 11-21
Arming the trigger 2-10
ASCII

and FORMat 28-41
character 32 1-5
linefeed 1-13

ATER? 23-6
attenuation factor for probe 9-4, 10-7,

15-5
AUTO 7-26, 20-15
automatic measurements

sample program 6-8
AUToscale 23-7

during initialization 1-15
in sample program 6-15

availability of measured data 4-2
AVERage 7-3, 16-6, 20-16

and acquisition completion 7-5
and count 7-4, 20-17

AXIS 18-4

B

BANDpass query 28-5
bandwidth limit 28-5
basic command structure 1-16
basic operations 1-2
BASIC sample programs 6-2
BIND

in MTESt SCALe command 20-36
Bit Definitions in Status Reporting 4-3
BLANk 23-8

and VIEW 23-31
blanking the user text area 14-21
block data 1-4, 1-21

in learnstring 1-4

Block Diagram
Status Reporting Overview 4-3

Braces 1-5
Brackets

Square 1-5
buffer, output 1-10, 1-19
buffered responses 5-14
Bus Activity, Halting 2-10
Bus Commands 2-10
BWIDth

in TRIG ADV COMM 27-26
BWLimit 10-3, 15-3
BYTE

and FORMat 28-42
Understanding the format 28-37

BYTeorder 28-6
and DATA 28-11

C

C Program
DATA? Analog Channels 28-12
DATA? Digital Channels 28-26

C sample programs 6-2
Calibration Commands 9-2, 9-5

OUTPut 9-6
SKEW 9-7
STATus? 9-8

calibration status 9-8
CANCel

in self-test command 24-3
CDIRectory 13-3
CDISplay (Clear DISplay) 23-9
center screen voltage 10-6, 10-17
CGRade 14-3
Channel Commands 10-2

BWLimit 10-3
DISPlay 10-4
EADapter 10-10
ECoupling 10-12
INPut 10-5
OFFSet 10-6
PROBe 10-7
PROBe ATTenuation 10-9
PROBe EXTernal 10-14
PROBe EXTernal GAIN 10-15
PROBe EXTernal OFFSet 10-17
PROBe EXTernal UNITs 10-19
PROBe GAIN 10-21, 15-16

Index

Index-2

PROBe ID? 10-22
PROBe SKEW 10-24
PROBe STYPe 10-25
RANGe 10-26
SCALe 10-27
UNITs 10-28

CHANnel PROBe ID? 10-22
channels, and VIEW 28-57
channel-to-channel skew factor 9-7
character program data 1-11
CLEar 21-14
Clearing

Buffers 2-10
Pending Commands 2-10

clearing
DONE bit 4-17
error queue 4-18, 30-3
registers and queues 4-19
Standard Event Status Register 4-11,

11-7
status data structures 11-4
TRG bit 4-10, 4-17

clipped waveforms, and measurement
error 21-6

CLOCk 21-15
and STATe 27-40
in TRIG ADV STATe 27-40

CLOCk METHod 21-16
CLOCk VERTical 21-18
CLOCk VERTical RANGe 21-20
*CLS (Clear Status) 11-4
CME bit 11-6, 11-8
COLumn 14-7
combining

commands in same subsystem 1-8
long- and short-form headers 1-11

combining compound and simple
commands 1-14

Command

EADapter 10-10, 15-7
ECoupling 10-12, 15-9

*ESE 11-5
ADD 16-5
AER? 23-4, 23-5
ALIGn 20-4
AlignFIT 20-5
AMASk CREate 20-7

AMASk SAVE|STORe 20-9
AMASk SOURce 20-8
AMASk UNITs 20-10
AMASk XDELta 20-11
AMASk YDELta 20-13
AREA 17-3, 21-7
ATER? 23-6
AUTO 20-15
AUToscale 23-7
AVERage 7-3, 16-6, 20-16
AVERage COUNt 20-17
AXIS 18-4
BLANk 23-8
BWLimit 10-3, 15-3
CANCel 24-3
CDIRectory 13-3
CDISplay 23-9
CGRade 14-3

LEVels? 14-5
CGRade CROSsing 21-8
CGRade DCDistortion 21-9
CGRade EHEight 21-10
CGRade EWIDth 21-11
CGRade JITTer 21-12
CGRade QFACtor 21-13
CHANnel PROBe ID? 10-22
CLEar 21-14
CLear Status 11-4
CLOCk 21-15
CLOCk METHod 21-16
CLOCk VERTical 21-18
CLOCk VERTical RANGe 21-20
COLumn 14-7
COMMonmode 16-7
COMPlete 7-5
COMPlete STATe 7-7
CONNect 14-8
COUNt 7-4
COUNt FAILures? 20-18
COUNt FWAVeforms? 20-19
COUNt WAVeforms? 20-20
CTCDutycycle 21-21
CTCJitter 21-23
CTCNwidth 21-25
CTCPwidth 21-26
CURSor? 19-3
DATA? 14-9
DATarate 21-27

DATE 25-3
DCOLor 14-10
DEBug 25-4
DEFine 21-28
DELete 13-4, 20-21
DELTatime 21-33
DIFF 16-8
DIGitize 1-17, 23-10
DIRectory? 13-5
DISable 23-12
DISPlay 10-4, 16-9, 29-3
DIVide 16-10
DPRinter 17-4
DSP 25-6
DUTYcycle 21-35
ENABle 20-22, 23-13
ERRor? 25-7
Event Status Enable 11-5
EXT PROBe 15-5
EXT PROBe ATTenuation 15-6
EXT PROBe GAIN 15-16
EXT PROBe ID? 15-17
EXT PROBe SKEW 15-18
FACTors 17-6
FALLtime 21-37
FFT DFRequency 21-39
FFT FREQuency 16-11, 21-41
FFT MAGNitude 21-42
FFT PEAK1 21-43
FFT PEAK2 21-44
FFT RESolution 16-12
FFT THReshold 21-45
FFT WINDow 16-13
FFTMagnitude 16-15
FFTPhase 16-16, 16-17
FOLDing 20-23
FOLDing:BITS 20-24
FREQuency 21-46
GPIB Mode 2-6
GRATicule 14-11
GRATicule INTensity 14-11
HAMPlitude 20-25
HEADer 25-8, 25-10
HIGHpass 16-18, 16-23
HISTogram HITS 21-48
HISTogram M1S 21-50
HISTogram M2S 21-52
HISTogram M3S 21-54

Index

Index-3

HOLDtime 21-63
HORizontal POSition 16-19
HORizontal RANGe 16-20
IMAGe 17-7
IMPedance 20-26
INPut 10-5, 15-4
INTegrate 16-21
INTerpolate 7-8
INVert 16-22, 20-28
JITTer HISTogram 21-65
JITTer MEASurement 21-66
JITTer SPECtrum 21-67
JITTer SPECtrum HORizontal 21-68
JITTer SPECtrum HORizontal

POSition 21-69
JITTer SPECtrum HORizontal

RANGe 21-70
JITTer SPECtrum VERTical 21-71
JITTer SPECtrum VERTical OFFSet

21-72
JITTer SPECtrum VERTical RANGe

21-73
JITTer SPECtrum WINDow 21-74
JITTer STATistics 21-75
JITTer TRENd 21-76
JITTer TRENd SMOoth 21-77
JITTer TRENd SMOoth POINts

21-78
JITTer TRENd VERTical 21-79
JITTer TRENd VERTical OFFSet

21-19, 21-80
JITTer TRENd VERTical RANGe

21-81
LAMPlitude 20-29
LINE 14-14
LOAD 13-6, 20-30, 29-4
LONGform 25-11
MAGNify 16-24
MAXimum 16-25, 16-26
MDIRectory 13-7
MEASure FFT DMAGnitude 21-40
MEASurement READout 19-4
MINimum 16-27
MODE 7-9, 18-5, 19-5
MODel? 23-16
MPRotect 9-6
MULTiply 16-28
NCJitter 21-82

NREGions? 20-31
NWIDth 21-84
OFFSet 10-6, 16-29
OPEE 23-17
OPER? 23-18
Operation Complete (*OPC) 11-12
Option (*OPT) 11-13
OUTPut 9-6
OVERshoot 21-86
OVLenable 23-19
OVLRegister? 23-20
PATTern THReshold LEVel 27-36,

27-44
PERiod 21-88
PERSistence 14-15
PHASe 21-90
POINts 7-11
POINts AUTO 7-21
POSition 26-3
Power-on Status Clear (*PSC) 11-14
PREShoot 21-92
PRINt 23-21
PRINters? 17-8
PROBe 10-7, 15-5
PROBe ATTenuation 10-9
PROBe EXTernal 10-14, 15-11
PROBe EXTernal GAIN 10-15, 15-12
PROBe EXTernal OFFSet 10-17
PROBe EXTernal UNITs 10-19,

15-14
PROBe GAIN 10-21
PROBe IMPedance? 20-32
PROBe SKEW 10-24, 15-18
PROBe STYPe 10-25
PWD? 13-12
PWIDth 21-94
RANGe 10-26, 15-19, 16-30, 26-4
Recall (*RCL) 11-15
RECall SETup 23-22
REFerence 26-5
Reset (*RST) 11-16
RESults? 21-96
RISetime 21-99
ROLL 26-6
ROW 14-16
RUMode 20-33

SOFailure 20-35
RUN 23-23

SAVE 29-5
SCALe 10-27, 26-7
SCALe BIND 20-36
SCALe SIZE 18-6
SCALe X1 20-37
SCALe XDELta 20-38
SCALe Y1 20-40
SCALe Y2 20-41
SCOLor 14-17
SCOPETEST 24-4
SCRatch 21-101
SEGMented 13-13
SENDvalid 21-102
SERial 23-24
Service Request Enable (*SRE)

11-18
SETup 25-13
SETuptime 21-103
SIMage 13-14
SINGle 23-25
SKEW 9-7
SLEWrate 21-105
SMOoth 16-31
SOURce 20-42, 21-106
SRATe 7-24
SRATe AUTO 7-26
STARt | STOP 20-43
STATistics 21-107
STATus? 9-8
STIMe 20-44, 20-46
STOP 23-27
STORe 13-8, 13-15

WAVEform 23-29
STORe SETup 23-28
STRing 14-20
SUBTract 16-32
TDELta? 19-6
TEDGe 21-108
TER? 23-30
TEXT 14-21
TIEClock2 21-110
TIEData 21-112
TIME 25-15
TITLe? 20-45
TMAX 21-114
TMIN 21-115
TRIG ADV COMM BWID 27-26
TRIG ADV COMM ENCode 27-27

Index

Index-4

TRIG ADV COMM LEVel 27-28
TRIG ADV COMM PATTern 27-29
TRIG ADV COMM POLarity 27-30
TRIG ADV COMM SOURce 27-31
TRIG ADV EDLY ARM SLOPe 27-48
TRIG ADV EDLY ARM SOURce

27-47
TRIG ADV EDLY EVENt DELay

27-49
TRIG ADV EDLY EVENt SLOPe

27-51
TRIG ADV EDLY EVENt SOURce

27-50
TRIG ADV EDLY TRIG SLOPe 27-53
TRIG ADV EDLY TRIG SOURce

27-52
TRIG ADV PATT CONDition 27-34
TRIG ADV PATT LOGic 27-35
TRIG ADV STATe CLOCk 27-40
TRIG ADV STATe LOGic 27-41
TRIG ADV STATe LTYPe 27-42
TRIG ADV STATe SLOPe 27-43
TRIG ADV STV FIELd 27-63
TRIG ADV STV LINE 27-64
TRIG ADV STV SOURce 27-65
TRIG ADV STV SPOLarity 27-66
TRIG ADV TDLY ARM SLOPe 27-57
TRIG ADV TDLY ARM SOURce

27-56
TRIG ADV TDLY DELay 27-58
TRIG ADV TDLY TRIG SLOPe 27-60
TRIG ADV TDLY TRIG SOURce

27-59
TRIG ADV UDTV ENUMber 27-69
TRIG ADV UDTV PGTHan 27-70
TRIG ADV UDTV POLarity 27-71
TRIG ADV UDTV SOURce 27-72
TRIG ADV VIOL MODE 27-74
TRIG ADV VIOL PWID DIR 27-77
TRIG ADV VIOL PWID POL 27-78
TRIG ADV VIOL PWID WIDT 27-80
TRIG ADV VIOL PWIDth 27-79
TRIG ADV VIOL SET HOLD DSO

27-95
TRIG ADV VIOL SET HOLD DSO

HTHR 27-96
TRIG ADV VIOL SET HOLD DSO

LTHR 27-97

TRIG ADV VIOL SET HOLD TIME
27-98

TRIG ADV VIOL SET MODE 27-84
TRIG ADV VIOL SET SET CSO 27-85
TRIG ADV VIOL SET SET CSO

EDGE 27-87
TRIG ADV VIOL SET SET CSO LEV

27-86
TRIG ADV VIOL SET SET DSO 27-88
TRIG ADV VIOL SET SET DSO

HTHR 27-89
TRIG ADV VIOL SET SET DSO

LTHR 27-90
TRIG ADV VIOL SET SET TIME?

27-91
TRIG ADV VIOL SET SHOL CSO

27-99
TRIG ADV VIOL SET SHOL CSO

EDGE 27-101
TRIG ADV VIOL SET SHOL CSO

LEV 27-100
TRIG ADV VIOL SET SHOL DSO

27-102
TRIG ADV VIOL SET SHOL DSO

HTHR 27-103
TRIG ADV VIOL SET SHOL DSO

LTHR 27-104
TRIG ADV VIOL SET SHOL HTIMe

27-106
TRIG ADV VIOL SET SHOL STIMe

27-105
TRIG ADV VIOL TRAN 27-109
TRIG ADV VIOL TRAN SOUR 27-110
TRIG ADV VIOL TRAN SOUR HTHR

27-111
TRIG ADV VIOL TRAN SOUR LTHR

27-112
TRIG ADV VIOL TRAN TYPE 27-113
TRIG EDGE COUPling 27-17
TRIG EDGE SLOPe 27-18
TRIG EDGE SOURce 27-19
TRIG GLITch POLarity 27-22
TRIG GLITch SOURce 27-23
TRIG GLITch WIDTh 27-24
TRIG HOLDoff 27-9
TRIG HTHR 27-10
TRIG HYSTeresis 27-11
TRIG LEVel 27-12

TRIG LTHR 27-13
TRIG SWEep 27-14
Trigger (*TRG) 11-22
TRIGger EDGE SLOPe 27-15
TRIGger EDGE SOURce 27-15
TRIGger MODE 27-6, 27-8
TSTArt 19-7
TSTOp 19-9
TVOLt 21-116
UNITinterval 21-118
UNITs 10-28, 15-20
VAMPlitude 21-119
VAVerage 21-120
VBASe 21-122
VDELta? 19-11
VERSus 16-33
VERTical 16-34
VIEW 23-31, 26-8
VIOL SET HOLD CSO 27-92
VIOL SET HOLD CSO EDGE 27-94
VIOL SET HOLD CSO LEV 27-93
VLOWer 21-123
VMAX 21-124
VMIDdle 21-125
VMIN 21-126
VPP 21-127
VRMS 21-128
VSTArt 19-12
VSTOp 19-14
VTIMe 21-130
VTOP 21-131
VUPPer 21-132
Wait-to-Continue (*WAI) 11-24
WAVeform BYTeorder 28-6
WAVeform FORMat 28-41
WAVeform SOURce 28-53
WAVeform VIEW 28-57
WINDow DEFault 18-7
WINDow DELay 26-9
WINDow POSition 26-11
WINDow RANGe 26-12
WINDow SCALe 26-13
WINDow SOURce 18-8
WINDow X1Position|LLIMit 18-9
WINDow X2Position|RLIMit 18-10
WINDow Y1Position|TLIMit 18-11
WINDow Y2Position|BLIMit 18-12
X1Position 19-16

Index

Index-5

X1Y1source 19-18
X2Position 19-17
X2Y2source 19-19
XOFFset 29-6
XRANge 29-7
Y1Position 19-21
Y2Position 19-22
YOFFset 29-8
YRANge 29-9

command
execution and order 3-4
structure 1-16

Command and Data Concepts
GPIB 2-6

Command Error 30-5
Status Bit 4-3

Command Tree 5-4, 5-6, 5-7, 5-8, 5-9
Command Types 5-4
Commands

MTEE 23-14
commands embedded in program

messages 1-14
commas and spaces 1-6
comma-separated

variable file format 6-13
Common Command Header 1-8
Common Commands 11-2

Clear Status (*CLS) 11-4
Event Status Enable (*ESE) 11-5
Event Status Register (*ESR) 11-7
Identification Number (*IDN) 11-9
Learn (*LRN) 11-10
Operation Complete (*OPC) 11-12
Option (*OPT?) 11-13
Power-on Status Clear (*PSC?)

11-14
Recall (*RCL) 11-15
Reset (*RST) 11-16
Save (*SAV) 11-17
Service Request Enable (*SRE)

11-18
Status Byte (*STB?) 11-20
Test (*TST?) 11-23
Trigger (*TRG) 11-22
Wait-to-Continue (*WAI) 11-24
within a program message 11-3

COMMonmode 16-7
commonmode voltage of operands 16-7

Communicating Over the GPIB Interface
2-7

Communicating Over the LAN Interface
2-8

COMPlete 7-5
COMPlete query 28-7
COMPlete STATe 7-7
compound command header 1-7
compound queries 3-4
Computer Code and Capability 2-5
concurrent commands 5-14
CONDition

in TRIG ADV PATTern 27-34
CONNect 14-8
conventions of programming 5-2
converting waveform data

from data value to Y-axis units 28-4
sample program 6-12

COUNt 7-4
in MTESt AVERage command 20-17

COUNt query 28-8
COUPling

in TRIGger EDGE 27-17
COUPling query 28-9
coupling, input 10-5, 15-4
CREate

in MTESt AMASk command 20-7
CROSsing

in MEASure CGRade command 21-8
CTCDutycycle 21-21
CTCJitter 21-23
CTCNwidth 21-25
CTCPwidth 21-26
CURSor? 19-3

D

data
acquisition 28-3
conversion 28-4

data in a learnstring 1-4
data in a program 1-6
Data Mode

GPIB 2-6
Data Structures

and Status Reporting 4-5
data transmission mode

and FORMat 28-41
DATA? 14-9, 28-10

Analog Channels C Program 28-12
Digital Channels C Program 28-26

DATarate 21-27
DATE 25-3
DCDistortion

in MEASure CGRade command 21-9
DCOLor 14-10
DDE bit 11-6, 11-8
DEBug 25-4
decimal 32 (ASCII space) 1-5
Decision Chart for Status Reporting 4-20
DEFault

in HISTogram WINDow command
18-7

Default
GPIB Address 2-7
Startup Conditions 2-4

Default Startup Conditions 2-4
DEFine 21-28
defining functions 16-2
def-length block response data 1-21
DELay

in TRIG ADV EDLY EVENt 27-49
in TRIG ADV TDLY 27-58

delay
and WINDow DELay 26-9

delay trigger modes 27-45, 27-54
DELete 13-4, 20-21
deleting files 13-4
DELTatime 21-33

and DEFine 21-28
derivative of functions 16-8
Device Address

GPIB 2-7
LAN 2-8

device address 1-3, 1-4
Device Clear (DCL) 2-10
Device Clear Code and Capability 2-5
Device Dependent Error (DDE), Status

Bit 4-3
Device- or Oscilloscope-Specific Error

30-7
Device Trigger Code and Capability 2-5
device-dependent data 1-21
DFREQuency

in MEASure FFT command 21-39
DIFF 16-8
DIGitize 23-10

Index

Index-6

setting up for execution 7-2
Digitize

Aborting 2-10
DIRectory? 13-5
DISable 23-12
Disabling Serial Poll 2-10
discrete derivative of functions 16-8
Disk Commands 13-2

CDIRectory 13-3
DELete 13-4
DIRectory? 13-5
LOAD 13-6
MDIRectory 13-7
PWD? 13-12
SEGMented 13-13
SIMage 13-14
STORe 13-8, 13-15

DISPlay 10-4, 16-9, 29-3
DISPlay Commands

CGRade 14-3
CGRADE LEVels? 14-5
CGRade LEVels? 14-5

Display Commands 14-2
COLumn 14-7
CONNect 14-8
DATA? 14-9
DCOLor 14-10
GRATicule 14-11
GRATicule INTensity 14-11
LINE 14-14
PERSistence 14-15
ROW 14-16
SCOLor 14-17
STRing 14-20
TEXT 14-21

display persistence 14-15
DIVide 16-10
dividing functions 16-10
DMAGnitude

in MEASure FFT command 21-40
DPRinter 17-4
Driver Electronics Code and Capability

2-5
DSP (display) 25-6
duplicate mnemonics 1-9
DUTYcycle 21-35

E

EADapter 10-10, 15-7
ECoupling 10-12, 15-9
EDGE

trigger mode 27-15
EDGE trigger commands 27-15
EHEight

in MEASure CGRade command
21-10

Ellipsis
... 1-5

embedded
commands 1-14
strings 1-3, 1-4, 1-13

ENABle 20-22, 23-13
Enable Register 11-3
ENCode

in TRIG ADV COMM 27-27
End Of String (EOS) 1-13
End Of Text (EOT) 1-13
End-Or-Identify (EOI) 1-13
ENUMber

in TRIG ADV UDTV 27-69
EOI and IEEE 488.2 5-14
equipment for calibration 9-3
equivalent time mode 7-9
error

in measurements 21-5
messages 30-2
numbers 30-4
query interrupt 1-10, 1-19

Error Messages table 30-9
error queue 30-3

and status reporting 4-18
overflow 30-3

ERRor? 25-7
errors

exceptions to protocol 3-4
ESB (Event Status Bit) 4-4, 11-19, 11-21
ESB (Event Summary Bit) 11-5
*ESE (Event Status Enable) 11-5
ESR (Standard Event Status Register)

4-11
ETIMe 7-9
event monitoring 4-2
Event Registers Default 2-4
Event Status Bit (ESB) 4-4
Event Status Enable (*ESE)

Status Reporting 4-12
Event Summary Bit (ESB) 11-5
EWIDth

in MEASure CGRade command
21-11

EWINdow, and DEFine 21-29
Example Program 1-16

in initialization 1-16
example programs

C and BASIC 6-2
exceptions to protocol 3-4
EXE bit 11-6, 11-8
executing DIGITIZE 7-2
execution

errors, and command errors 30-5
of commands and order 3-4

Execution Error 30-6
Execution Error (EXE), Status Bit 4-3
exponential notation 1-12
exponents 1-12
External Channel Commands 15-2

BWLimit 15-3
INPut 15-4
PROBe 15-5
PROBe SKEW 15-18
RANGe 15-19
UNITs 15-20

External Commands
EADapter 15-7
PROBe ID? 15-17

EXTernal PROBe ID? 15-17

F

FACTors 17-6
FAILures?

in MTESt COUNt command 20-18
fall time measurement setup 21-5
FALLtime 21-37
FFT Commands 21-5
FFTMagnitude 16-15
FFTPhase 16-16, 16-17
FIELd

in TRIG ADV STV 27-63
filter, internal low-pass 10-3, 15-3
FOLDing 20-23
FOLDing:BITS 20-24
FORMat 28-41

and DATA 28-11

Index

Index-7

formatting query responses 25-2
fractional values 1-12
FREQuency 21-46

in FUNCtion FFT command 16-11
in MEASure FFT command 21-41

frequency measurement setup 21-5
full-scale vertical axis 10-26
FUNCtion 16-4
function

and vertical scaling 16-30
time scale 16-3

Function Commands 16-2
ADD 16-5
AVERage 16-6
COMMonmode 16-7
DIFF 16-8
DISPlay 16-9
DIVide 16-10
FFT FREQuency 16-11
FFT RESolution 16-12
FFT WINDow 16-13
FFTMagnitude 16-15
FFTPhase 16-16, 16-17
FUNCtion? 16-4
HORizontal POSition 16-19
HORizontal RANGe 16-20
INTegrate 16-21
INVert 16-22
MAGNify 16-24
MAXimum 16-25, 16-26
MINimum 16-27
MULTiply 16-28
OFFSet 16-29
RANGe 16-30
SMOoth 16-31
SUBTract 16-32
VERSus 16-33
VERTical 16-34

functional elements of protocol 3-3
functions

and VIEW 28-57
combining in instructions 1-8

FWAVeforms?
in MTESt COUNt command 20-19

G

GAIN 10-15, 15-12
gain and offset of a probe 9-4

gain factor for user-defined probe 10-15,
15-12

generating service request
sample program 6-14, 6-16, 6-17

GLITch
trigger mode 27-21

glitch
trigger mode 27-20

GPIB
Interface Connector 2-3

GRATicule 14-11
HARDcopy AREA 17-3

Group Execute Trigger (GET) 2-10

H

Halting bus activity 2-10
HAMPlitude 20-25
Hardcopy Commands 17-2

AREA 17-3
DPRinter 17-4
FACTors 17-6
IMAGe 17-7
PRINters? 17-8

hardcopy of the screen 17-2
hardcopy output and message

termination 3-4
HEADer 25-8, 25-10
header

stripped 6-11
within instruction 1-4

headers 1-4
types 1-7

Histogram Commands 18-2
AXIS 18-4
MODE 18-5
SCALe SIZE 18-6
WINDow DEFault 18-7
WINDow SOURce 18-8
WINDow X1Position|LLIMit 18-9
WINDow X2Position|RLIMit 18-10
WINDow Y1Position|TLIMit 18-11
WINDow Y2Position|BLIMit 18-12

HITS
in MEASure HISTogram command

21-48
HOLDoff

in TRIGger 27-9
HOLDtime 21-63

horizontal
functions, controlling 26-2
offset, and XOFFset 29-6
range, and XRANge 29-7
scaling and functions 16-2

HORizontal POSition 16-19
HORizontal RANGe 16-20
Host language 1-4
HP BASIC 5.0 1-2
HTHReshold 27-10

in TRIGger 27-36, 27-44
hue 14-18
HYSTeresis

in TRIGger 27-11

I

*IDN? (Identification Number) 11-9
IEEE 488.1 3-2

and IEEE 488.2 relationship 3-2
IEEE 488.2 3-2

compliance 3-2
conformity 1-2
Standard 1-2
Standard Status Data Structure

Model 4-2
IMAGe 17-7
image specifier, -K 25-14
image specifiers

and PREamble 28-48
IMPedance 20-26
impedance, input 10-5, 15-4
IMPedance?

in MTESt PROBe command 20-32
individual commands language 1-2
Infinity Representation 5-14
initialization 1-15

event status 4-2
IO routine 6-5
sample program 6-4

initializing oscilloscope
sample program 6-6, 6-15

INPut 10-5, 15-4
Input Buffer

Clearing 2-10
input buffer 3-3

default condition 3-4
input coupling

and COUPling? 28-9

Index

Index-8

instruction headers 1-4
Instrument Address

GPIB 2-7
instrument status 1-22
integer definition 1-12
INTegrate 16-21
intensity 14-11
Interface

Capabilities 2-5
Clear (IFC) 2-10
GPIB Select Code 2-7

interface
functions 2-2

interface, initializing 1-15
internal low-pass filter 10-3, 15-3
INTerpolate 7-8
interpreting commands, parser 3-3
interrupted query 1-10, 1-19
Introduction to Programming 1-2
INVert 16-22, 20-28
inverting functions 16-22

J

JITTer
in MEASure CGRade command

21-12
JITTer HISTogram 21-65
JITTer MEASurement 21-66
JITTer SPECtrum 21-67
JITTer SPECtrum HORizontal 21-68
JITTer SPECtrum HORizontal POSition

21-69
JITTer SPECtrum HORizontal RANGe

21-70
JITTer SPECtrum VERTical 21-71
JITTer SPECtrum VERTical OFFSet

21-72
JITTer SPECtrum VERTical RANGe

21-73
JITTer SPECtrum WINDow 21-74
JITTer STATistics 21-75
JITTer TRENd 21-76
JITTer TRENd SMOoth 21-77
JITTer TRENd SMOoth POINts 21-78
JITTer TRENd VERTical 21-79
JITTer TRENd VERTical OFFSet 21-19,

21-80
JITTer TRENd VERTical RANGe 21-81

K

-K 25-14

L

LAMPlitude 20-29
language for program examples 1-2
Learn (*LRN) 11-10
learnstring block data 1-4
LEVel

in TRIG ADV COMM 27-28
in TRIGger 27-12

LEVels?
in DISPlay CGRade command 14-5

LF/HF reject, input 10-5, 15-4
LINE 14-14

in TRIG ADV STV 27-64
linefeed 1-13
List of Error Messages 30-9
Listener Code and Capability 2-5
Listeners, Unaddressing All 2-10
LOAD 13-6, 20-30, 29-4
loading and saving 13-2
LOGic

and STATe 27-41
in TRIG ADV PATT 27-35
in TRIG ADV STATe 27-41

LONGform 25-11
long-form headers 1-11
lowercase 1-11

headers 1-11
low-pass filter, internal 10-3, 15-3
*LRN (Learn) 11-10
*LRN?

and SYSTem SETup? 25-14
LSBFirst, and BYTeorder 28-6
LTHReshold 27-13
LTYPe

and STATe 27-42
in TRIG ADV STATe 27-42

luminosity 14-18

M

M1S
in MEASure HISTogram command

21-50
M2S

in MEASure HISTogram command
21-52

M3S
in MEASure HISTogram command

21-54
MAGNify 16-24
MAGNitude

in MEASure FFT command 21-42
MAIN, and VIEW 28-57
making measurements 21-5
Marker Commands 19-2

CURSor? 19-3
MEASurement READout 19-4
MODE 19-5
TDELta? 19-6
TSTArt 19-7
TSTOp 19-9
VDELta? 19-11
VSTArt 19-12
VSTOp 19-14
X1Position 19-16
X1Y1source 19-18
X2Position 19-17
X2Y2source 19-19
XDELta? 19-20
Y1Position 19-21
Y2Position 19-22
YDELta? 19-23

Mask Test Commands 20-2
ALIGn 20-4
AlignFIT 20-5
AMASk CREate 20-7
AMASk SAVE|STORe 20-9
AMASk SOURce 20-8
AMASk UNITs 20-10
AMASk XDELta 20-11
AMASk YDELta 20-13
AUTO 20-15
AVERage 20-16
AVERage COUNt 20-17
COUNt FAILures? 20-18
COUNt FWAVeforms? 20-19
COUNt WAVeforms? 20-20
DELete 20-21
ENABle 20-22
FOLDing 20-23
FOLDing:BITS 20-24
HAMPlitude 20-25
IMPedance 20-26
INVert 20-28

Index

Index-9

LAMPlitude 20-29
LOAD 20-30
NREGions? 20-31
PROBe IMPedance? 20-32
RUMode 20-33
RUMode SOFailure 20-35
SCALe

BIND 20-36
Y1 20-40

SCALe X1 20-37
SCALe XDELta 20-38
SCALe Y1 20-40
SCALe Y2 20-41
SOURce 20-42
STARt | STOP 20-43
STIMe 20-44, 20-46
TITLe? 20-45

mask, Service Request Enable Register
11-18

Master Summary Status (MSS)
and *STB 11-20
Status Bit 4-4

MAV (Message Available) 4-4
bit 11-19, 11-21

MAX
in MEASure HISTogram command

21-56
MAXimum 16-25, 16-26
MDIRectory 13-7
MEAN

in MEASure HISTogram command
21-57

MEASure
RESults and statistics 21-107

Measure Commands 21-2
AREA 21-7
CGRade CROSsing 21-8
CGRade DCDistortion 21-9
CGRade EHEight 21-10
CGRade EWIDth 21-11
CGRade JITTer 21-12
CGRade QFACtor 21-13
CLEar 21-14
CLOCk 21-15
CLOCk METHod 21-16
CLOCk VERTical 21-18
CLOCk VERTical RANGe 21-20
CTCDutycycle 21-21

CTCJitter 21-23
CTCNwidth 21-25
CTCPwidth 21-26
DATarate 21-27
DEFine 21-28
DELTatime 21-33
DUTYcycle 21-35
FALLtime 21-37
FFT DFRequency 21-39
FFT DMAGnitude 21-40
FFT FREQuency 21-41
FFT MAGNitude 21-42
FFT PEAK1 21-43
FFT PEAK2 21-44
FFT THReshold 21-45
FREQuency 21-46
HISTogram HITS 21-48
HISTogram M1S 21-50
HISTogram M2S 21-52
HISTogram M3S 21-54
HISTogram MAX 21-56
HISTogram MEAN 21-57
HISTogram MEDian 21-58
HISTogram MIN 21-59
HISTogram PEAK 21-60
HISTogram PP 21-61
HOLDtime 21-63
JITTer HISTogram 21-65
JITTer MEASurement 21-66
JITTer SPECtrum 21-67
JITTer SPECtrum HORizontal 21-68
JITTer SPECtrum HORizontal

POSition 21-69
JITTer SPECtrum HORizontal

RANGe 21-70
JITTer SPECtrum VERTical 21-71
JITTer SPECtrum VERTical OFFSet

21-72
JITTer SPECtrum VERTical RANGe

21-73
JITTer SPECtrum WINDow 21-74
JITTer STATistics 21-75
JITTer TRENd 21-76
JITTer TRENd SMOoth 21-77
JITTer TRENd SMOoth POINts

21-78
JITTer TRENd VERTical 21-79
JITTer TRENd VERTical OFFSet

21-19, 21-80
JITTer TRENd VERTical RANGe

21-81
NCJitter 21-82
NWIDth 21-84
OVERshoot 21-86
PERiod 21-88
PHASe 21-90
PREShoot 21-92
PWIDth 21-94
RESults? 21-96
RISetime 21-99
SCRatch 21-101
SENDvalid 21-102
SETuptime 21-103
SLEWrate 21-105
SOURce 21-106
STATistics 21-107
TEDGe 21-108
TIEClock2 21-110
TIEData 21-112
TMAX 21-114
TMIN 21-115
TVOLt 21-116
UNITinterval 21-118
VAMPlitude 21-119
VAVerage 21-120
VBASe 21-122
VLOWer 21-123
VMAX 21-124
VMIDdle 21-125
VMIN 21-126
VPP 21-127
VRMS 21-128
VTIMe 21-130
VTOP 21-131
VUPPer 21-132

measurement
error 21-5
readout 19-4
setup 21-5
source 21-106

MEDian
in MEASure HISTogram command

21-58
memories, and VIEW 28-57
message

queue 4-19

Index

Index-10

termination with hardcopy 3-4
Message (MSG), Status Bit 4-4
Message Available (MAV)

and *OPC 11-12
Status Bit 4-4

Message Communications and System
Functions 3-2

Message Event Register 4-10
message exchange protocols

of IEEE 488.2 3-3
MIN 16-27

in MEASure HISTogram command
21-59

Mnemonic Truncation 5-3
MODE 7-9, 18-5, 19-5

in TRIGger MODE 27-6, 27-8
MODel? 23-16
monitoring events 4-2
MPRotect 9-6
MSBFirst, and BYTeorder 28-6
MSG

bit in the status register 4-10
MSG bit 11-19, 11-21
MSS bit and *STB 11-20
MTEE 23-14
MTER? 23-15
multiple

program commands 1-14
queries 1-22
subsystems 1-14

Multiple numeric variables 1-22
MULTiply 16-28

N

NCJitter 21-82
NL (New Line) 1-13
NREGions? 20-31
NTSC TV trigger mode 27-61
numeric

program data 1-12
variable example 1-20
variables 1-20

NWIDth 21-84

O

OFFSet 10-6, 10-17, 16-29
offset and gain of a probe 9-4
*OPC (Operation Complete) 11-12

OPC bit 11-6, 11-8
OPEE 23-17
OPER bit 11-19, 11-21
OPER query 23-18
operands and time scale 16-2
operating the disk 13-2
Operation Complete (*OPC) 11-12

Status Bit 4-4
operation status 4-2
*OPT (Option) 11-13
Options, Program Headers 1-11
order of commands and execution 3-4
oscilloscope

trigger modes and commands 27-6
Oscilloscope Default GPIB Address 2-7
OUTPut 9-6
output buffer 1-10, 1-19
Output Command 1-4
Output Queue

Clearing 2-10
output queue 1-10, 4-18

default condition 3-4
definition 3-3

OUTPUT statement 1-3
overlapped and sequential commands

5-14
OVERshoot 21-86
OVLenable 23-19
OVLRegister query 23-20

P

PAL-M TV trigger mode 27-61
Parallel Poll Code and Capability 2-5
parametric measurements 21-2
Parser

Resetting 2-10
parser 1-15, 3-3

default condition 3-4
definition 3-3

passing values across the bus 1-10
passive probes and calibration 9-4
PATTern

in TRIG ADV COMM 27-29
PDETect 7-9
PEAK

in MEASure HISTogram command
21-60

PEAK1

in MEASure FFT command 21-43
PEAK2

in MEASure FFT command 21-44
peak-to-peak voltage, and VPP 21-127
Pending Commands, Clearing 2-10
PERiod 21-88
period measurement setup 21-5
PERsistence 14-15
PGTHan

in TRIG ADV UDTV 27-70
PHASe 21-90
POINts 7-11
POINts AUTO 7-21
POINts query 28-44
POLarity

and GLITch 27-22
in TRIG ADV COMM 27-30
in TRIG ADV UDTV 27-71
in TRIGger GLITch 27-22

PON bit 11-8
POSition 26-3
position

and WINDow POSition 26-11
pound sign (#) and block data 1-21
Power On (PON) status bit 4-3, 11-6
Power-up Condition 2-4
PP

in MEASure HISTogram command
21-61

PREamble 28-45
and DATA 28-11

PREShoot 21-92
PRINt 23-21
PRINters? 17-8
printing

specific screen data 17-3
the screen 17-2

PROBe 10-7, 15-5
PROBe ATTenuation 10-9, 15-6
probe attenuation factor 9-4
Probe Calibration 9-4
PROBe EXTernal 10-14, 15-11
PROBe EXTernal GAIN 10-15, 15-12
PROBe EXTernal OFFSet 10-17
PROBe EXTernal UNITs 10-19, 15-14
PROBe GAIN 10-21, 15-16
PROBe SKEW 10-24, 15-18
PROBe STYPe 10-25

Index

Index-11

program data 1-6
Program example 1-16
Program Header Options 1-11
program message terminator 1-13
program overview

initialization example 1-16
programming basics 1-2
Programming Conventions 5-2
programming examples language 1-2
Programming Getting Started 1-14
protocol

exceptions and operation 3-4
*PSC (Power-on Status Clear) 11-14
pulse width measurement setup 21-5
pulse width violation mode 27-75
PWD? 13-12
PWIDth 21-94

Q

QFACtor
in MEASure CGRade command

21-13
Query

*SRE? 11-18
quantization levels 6-12
Query 1-4, 1-10

*ESE? (Event Status Enable) 11-5
*ESR? (Event Status Register) 11-7
*STB? (Status Byte) 11-20
AER? 23-4, 23-5
AREA? 17-3
ATER? 23-6
AVERage? 7-3
BANDpass? 28-5
BWLimit? 10-3, 15-3
BYTeorder? 28-6
CHANnel PROBe ID? 10-22
COLumn? 14-7
COMPlete STATe? 7-7
COMPlete? 7-6, 28-7
CONNect? 14-8
COUNt? 7-4, 20-17, 28-8
COUPling? 28-9
CURSor? 19-3
DATA? 14-9, 28-10
DATE? 25-3
DEBug? 25-5
DELTatime? 21-34

DIRectory? 13-5
DISPlay? 10-4, 10-14, 15-11, 16-9,

29-3
DPRinter? 17-5
DSP? 25-6
DUTYcycle? 21-36
EADapter? 10-11
ECoupling? 10-13, 15-10
ERRor? 25-7
EXT INPut? 15-4
EXT PROBe ATTenuation? 15-6
EXT PROBe EADapter? 15-8
EXT PROBe ID? 15-17
EXT PROBe SKEW? 15-18
EXT PROBe? 15-5
EXT RANGe? 15-19
EXT UNITs? 15-20
FACTors? 17-6
FALLtime? 21-38
FFT RESolution? 16-12
FORMat? 28-43
FREQuency? 21-47
FUNCtion? 16-4
GRATicule? 14-12, 14-13
HEADer 25-8, 25-10
HIGHpass? 16-18, 16-23
HORizontal POSition? 16-19
HORizontal RANGe? 16-20
Identification Number (*IDN?) 11-9
IMAGe? 17-7
INPut? 10-5
INTerpolate? 7-8
Learn (*LRN?) 11-10
LONGform? 25-11
MEASure FALLtime? 21-38
MEASure FFT DFRequency? 21-39
MEASure FFT DMAGnitude? 21-40
MEASure FFT FREQuency? 21-41
MEASure FFT MAGNitude? 21-42
MEASure FFT PEAK1? 21-43
MEASure FFT PEAK2? 21-44
MEASure FFT THReshold? 21-45
MODE? 7-10, 19-5
MODel? 23-16
MTEE? 23-14
MTER? 23-15
NWIDth? 21-85
OFFSet? 10-6, 10-18, 16-29

Option (*OPT?) 11-13
OUTPut? 9-6
OVERshoot? 21-87
PERiod? 21-89
PERSistence? 14-15
PHASe? 21-91
POINts AUTO? 7-21, 7-22, 7-23
POINts? 7-20, 28-44
POSition? 26-3
Power-on Status Clear (*PSC?)

11-14
PREamble? 28-45
PREShoot? 21-93
PRINters? 17-8
PROBe ATTenuation? 10-9
PROBe GAIN? 10-16, 10-21, 15-13,

15-16
PROBe MODE? 10-25
PROBe SKEW? 10-24
PROBe? 10-8
PWD? 13-12
PWIDth? 21-95
RANGe? 10-26, 16-30, 26-4
REFerence? 26-5
RESults? 21-96
RISetime? 21-100
ROLL 26-6
ROW? 14-16
SCALe? 10-27, 26-7
SCOLor? 14-19
SCOPETEST? 24-4
SENDvalid? 21-102
SETup? 25-13
SETuptime? 21-64, 21-104
SKEW? 9-7
SLEWrate? 21-105
SOURce? 21-106, 28-54
SRATe AUTO? 7-26
SRATe? 7-25
STATistics? 21-107
Status Byte (*STB) 11-20
STATus? 9-8
TDELta? 19-6
TEDGe? 21-109
TER? 23-30
Test (*TST?) 11-23
TMAX? 21-114
TMIN? 21-115

Index

Index-12

TRIG ADV COMM BWID? 27-26
TRIG ADV COMM ENCode? 27-27
TRIG ADV COMM LEVel? 27-28
TRIG ADV COMM PATTern? 27-29
TRIG ADV COMM POLarity? 27-30
TRIG ADV COMM SOURce? 27-31
TRIG ADV EDLY ARM SLOPe? 27-48
TRIG ADV EDLY ARM SOURce

27-47
TRIG ADV EDLY EVENt DELay?

27-49
TRIG ADV EDLY EVENt SLOPe?

27-51
TRIG ADV EDLY EVENt SOURce?

27-50
TRIG ADV EDLY TRIG SLOPe?

27-53
TRIG ADV EDLY TRIG SOURce?

27-52
TRIG ADV PATT COND? 27-34
TRIG ADV PATT LOGic? 27-35
TRIG ADV STATe CLOCk? 27-40
TRIG ADV STATe LOGic? 27-41
TRIG ADV STATe LTYPe? 27-42
TRIG ADV STATe SLOPe? 27-43
TRIG ADV STV FIELd? 27-63
TRIG ADV STV LINE? 27-64
TRIG ADV STV SOURce? 27-65
TRIG ADV STV SPOLarity? 27-66
TRIG ADV TDLY ARM SLOPe? 27-57
TRIG ADV TDLY ARM SOURce?

27-56
TRIG ADV TDLY DELay? 27-58
TRIG ADV TDLY TRIG SLOPe?

27-60
TRIG ADV TDLY TRIG SOURce?

27-59
TRIG ADV UDTV ENUMber? 27-69
TRIG ADV UDTV PGTHan? 27-70
TRIG ADV UDTV POLarity? 27-71
TRIG ADV UDTV SOURce? 27-72
TRIG ADV VIOL MODE? 27-74
TRIG ADV VIOL PWID DIR? 27-77
TRIG ADV VIOL PWID POL? 27-78
TRIG ADV VIOL PWID WIDT? 27-80
TRIG ADV VIOL PWIDth? 27-79
TRIG ADV VIOL SET HOLD CSO

EDGE? 27-94

TRIG ADV VIOL SET HOLD CSO
LEV? 27-93

TRIG ADV VIOL SET HOLD CSO?
27-92

TRIG ADV VIOL SET HOLD DSO
HTHR? 27-96

TRIG ADV VIOL SET HOLD DSO
LTHR? 27-97

TRIG ADV VIOL SET HOLD DSO?
27-95

TRIG ADV VIOL SET HOLD TIME?
27-98

TRIG ADV VIOL SET MODE? 27-84
TRIG ADV VIOL SET SET CSO

EDGE? 27-87
TRIG ADV VIOL SET SET CSO LEV?

27-86
TRIG ADV VIOL SET SET CSO?

27-85
TRIG ADV VIOL SET SET DSO

HTHR? 27-89
TRIG ADV VIOL SET SET DSO

LTHR? 27-90
TRIG ADV VIOL SET SET DSO?

27-88
TRIG ADV VIOL SET SET TIME?

27-91
TRIG ADV VIOL SET SHOL CSO

EDGE? 27-101
TRIG ADV VIOL SET SHOL CSO

LEV? 27-100
TRIG ADV VIOL SET SHOL CSO?

27-99
TRIG ADV VIOL SET SHOL DSO

HTHR? 27-103
TRIG ADV VIOL SET SHOL DSO

LTHR? 27-104
TRIG ADV VIOL SET SHOL DSO?

27-102
TRIG ADV VIOL SET SHOL HTIMe?

27-106
TRIG ADV VIOL SET SHOL STIMe?

27-105
TRIG ADV VIOL TRAN SOUR

HTHR? 27-111
TRIG ADV VIOL TRAN SOUR LTHR?

27-112
TRIG ADV VIOL TRAN SOUR?

27-110
TRIG ADV VIOL TRAN TYPE?

27-113
TRIG ADV VIOL TRAN? 27-109
TRIG EDGE COUPling? 27-17
TRIG EDGE SLOPe? 27-18
TRIG EDGE SOURce? 27-19
TRIG GLITch POLarity? 27-22
TRIG GLITch SOURce? 27-23
TRIG HOLDoff? 27-9
TRIG HTHR? 27-10
TRIG HYSTeresis? 27-11
TRIG LEVel? 27-12, 27-36, 27-44
TRIG LTHR? 27-13
TRIG SWEep? 27-14
TRIGger GLITch WIDTh? 27-24
TRIGger MODE? 27-8
TSTArt? 19-7
TSTOp? 19-10
TVOLt? 21-116
TYPE? 28-55
UNITs? 10-20, 10-28, 15-15
VAMPlitude? 21-119
VAVerage? 21-121
VBASe? 21-122
VDELta? 19-11
VIEW? 26-8, 28-58
VLOWer? 21-123
VMAX? 21-124
VMIDdle? 21-125
VMIN? 21-126
VPP? 21-127
VRMS? 21-129
VSTArt? 19-12
VSTOp? 19-14
VTIMe? 21-130
VTOP? 21-131
VUPPer? 21-132
WAVeform SEGMented COUNt?

28-51
WAVeform SEGMented TTAG?

28-52
WINDow DELay? 26-10
WINDow POSition? 26-11
WINDow RANGe? 26-12
WINDow SCALe? 26-13
X1Position? 19-16
X1Y1source? 19-18

Index

Index-13

X2Position? 19-17
X2Y2source? 19-19
XDELta? 19-20
XDISplay? 28-59
XINCrement? 28-60
XOFFset? 29-6
XORigin? 28-61
XRANge? 28-62, 29-7
XREFerence? 28-63
XUNits? 28-64
Y1Position? 19-21
YDELta? 19-23
YDISplay? 28-65
YINCrement? 28-66
YOFFset? 29-8
YORigin? 28-67
YRANge? 28-68, 29-9
YREFerence? 28-69
YUNits? 28-70

query
headers 1-10
interrupt 1-10
response 1-19
responses, formatting 25-2

Query Error 30-8
QYE Status Bit 4-3

query interrupt 1-19
question mark 1-10
queue, output 1-10
quoted strings 14-14
quotes, with embedded strings 1-13
QYE bit 11-6, 11-8

R

RANGe 10-26, 15-19, 16-30, 26-4
range

and WINDow RANGe 26-12
*RCL (Recall) 11-15
README file

for sample programs 6-18
real number definition 1-12
real time mode 7-9

and interpolation 7-8
RECall 23-22
Receiving Common Commands 11-3
Receiving Information from the

Instrument 1-19
REFerence 26-5

register
save/recall 11-15, 11-17
Standard Event Status Enable 4-12

reliability of measured data 4-2
Remote Local Code and Capability 2-5
remote programming basics 1-2
REPetitive 7-9
representation of infinity 5-14
Request Control (RQC)

Status Bit 4-3
Request Service (RQS)

Default 2-4
status bit 4-4

Reset (*RST) 11-16
Resetting the Parser 2-10
RESolution

in FUNCtion FFT command 16-12
response

data 1-21
generation 5-14

responses, buffered 5-14
result state code, and SENDvalid 21-102
RESults? 21-96
Returning control to system computer

2-10
rise time measurement setup 21-5
RISetime 21-99
RMS voltage, and VRMS 21-128
ROLL 26-6
Root level command

MTEE 23-14
Root level commands 23-2

AER? 23-4, 23-5
ATER? 23-6
AUToscale 23-7
BLANk 23-8
CDISplay 23-9
DIGitize 23-10
DISable 23-12
ENABle 23-13
MODel? 23-16
OPEE 23-17
OPER? 23-18
OVLenable 23-19
OVLEnable? 23-19
OVLRegister? 23-20
PRINt 23-21
RECall 23-22

RUN 23-23
SERial 23-24
SINGle 23-25
STOP 23-27
STORe 23-28
STORe WAVEform 23-29
TER? 23-30
VIEW 23-31

ROW 14-16
RQC (Request Control) 4-3

bit 11-6, 11-8
RQS (Request Service) 4-4

and *STB 11-20
Default 2-4

RQS/MSS bit 11-21
*RST (Reset) 6-15, 11-16
RTIMe 7-9
rule of truncation 5-3
rules of traversal 5-5
RUMode 20-33
RUN 23-23

and GET relationship 2-10

S

sample programs 6-2
segments 6-3

sample rate 7-24
sampling mode 7-9
saturation 14-18
*SAV (Save) 11-17
SAVE 29-5
save/recall register 11-15, 11-17
SAVE|STORe

in MTESt AMASk command 20-9
saving and loading 13-2
SCALe 10-27, 26-7

Y1 20-40
SCOLor 14-17
SCOPETEST

in self-test commands 24-4
SCRatch 21-101
SCReen

HARDcopy AREA 17-3
SEGMented 13-13

COUNt? 28-51
TTAG? 28-52

segments of sample programs 6-3
Selected Device Clear (SDC) 2-10

Index

Index-14

Selecting Multiple Subsystems 1-14
self test 11-23
Self-Test Commands 24-2

CANCel 24-3
SCOPETEST 24-4

semicolon usage 1-8
sending compound queries 3-4
SENDvalid 21-102
separator 1-5
Sequential and Overlapped Commands

5-14
SERial (SERial number) 23-24
Serial Poll

Disabling 2-10
serial poll

(SPOLL) in example 4-9
of the Status Byte Register 4-9

serial prefix, reading 11-9
Service Request

Code and Capability 2-5
sample program 6-14

Service Request Enable
(*SRE) 11-18
Register (SRE) 4-10
Register Bits 11-19
Register Default 2-4

setting
bits in the Service Request Enable

Register 4-10
Standard Event Status Enable

Register bits 4-12
time and date 25-15
TRG bit 4-10
voltage and time markers 19-2

setting up
for programming 1-14
service request 6-16
the instrument 1-15

SETup 25-13
setup recall 11-15
setup violation mode 27-81
setup, storing 13-15
SETuptime 21-103
Short form 1-11
short-form headers 1-11
short-form mnemonics 5-3
SIMage 13-14
simple command header 1-7

SINGle 23-25
SIZE

in HISTogram SCALe command 18-6
SKEW, in CALibrate command 9-7
SLEWrate 21-105
SLOPe

and STATe 27-43
in TRIG ADV EDLY ARM 27-48
in TRIG ADV EDLY EVENt 27-51
in TRIG ADV EDLY TRIGger 27-53
in TRIG ADV STATe 27-43
in TRIG ADV TDLY ARM 27-57
in TRIG ADV TDLY TRIGger 27-60
in TRIGger EDGE 27-18

SMOoth 16-31
SOFailure

in MTESt RUMode command 20-35
software version, reading 11-9
SOURce 20-42, 21-106, 28-53

and GLITch 27-23
and measurements 21-6
in HISTogram WINDow command

18-8
in MTEST AMASk command 20-8
in TRIG ADV COMM 27-31
in TRIG ADV EDLY ARM 27-47
in TRIG ADV EDLY EVENt 27-50
in TRIG ADV EDLY TRIGger 27-52
in TRIG ADV STV 27-65
in TRIG ADV TDLY ARM 27-56
in TRIG ADV TDLY TRIGger 27-59
in TRIG ADV UDTV 27-72
in TRIGger EDGE 27-19
in TRIGger GLITch 27-23

spaces and commas 1-6
spelling of headers 1-11
SPOLarity

in TRIG ADV STV 27-66
SPOLL example 4-9
Square Brackets 1-5
SRATe 7-24
*SRE (Service Request Enable) 11-18
SRE (Service Request Enable Register)

4-10
SSAVer 14-20
Standard Event Status Enable Register

(SESER) 4-12
Bits 11-6

Default 2-4
Standard Event Status Register

bits 11-8
Standard Event Status Register (ESR)

4-11
Standard Status Data Structure Model

4-2
STARt | STOP 20-43
STATistics 21-107
status 1-22

of an operation 4-2
Status Byte

(*STB) 11-20
Status Byte Register 4-8, 4-9

and serial polling 4-9
bits 11-21

Status Registers 1-22, 11-3
Status Reporting 4-2

Bit Definitions 4-3
Data Structures 4-5

Status Reporting Decision Chart 4-20
STATus, in CALibrate command 9-8
*STB (Status Byte) 11-20
STIMe 20-44, 20-46
STOP 23-27
STORe 13-8, 13-15, 23-28
STORe WAVEform 23-29
storing waveform

sample program 6-13
STRing 14-20
string variables 1-20

example 1-20
string, quoted 14-14
strings, alphanumeric 1-11
STV commands 27-62
SUBTract 16-32
suffix multipliers 1-12, 3-5
suffix units 3-5
summary bits 4-8
SWEep

in TRIGger 27-14
syntax error 30-5
SYSTem

SETup and *LRN 11-11
System Commands 25-2

DATE 25-3
DEBug 25-4
DSP 25-6

Index

Index-15

ERRor? 25-7
HEADer 25-8, 25-10
LONGform 25-11
SETup 25-13
TIME 25-15

System Computer
Returning control to 2-10

T

Talker
Code and Capability 2-5
Unaddressing 2-10

TDELta? 19-6
TEDGe

in MEASure command 21-108
temperature and calibration 9-3
TER? (Trigger Event Register) 23-30
termination of message during hardcopy

3-4
Terminator 1-13
Test (*TST) 11-23
TEXT 14-21
THReshold

in MEASure FFT command 21-45
THReshold, and DEFine 21-28, 21-30
TIEClock2 21-110
TIEData 21-112
TIME 25-15
time and date, setting 25-2
Time Base Commands 26-2

POSition 26-3
RANGe 26-4
REFerence 26-5
ROLL 26-6
SCALe 26-7
VIEW 26-8
WINDow DELay 26-9
WINDow RANGe 26-12

time buckets
and POINts? 28-44

time difference between markers 19-6
time information

of waveform 6-13
time scale

operands and functions 16-2
TITLe? 20-45
TMAX 21-114
TMIN 21-115

TOPBase, and DEFine 21-28, 21-31
transferring waveform data 28-2

sample program 6-10
transition violation mode 27-107
transmission mode

and FORMat 28-41
traversal rules 5-5
Tree Traversal

Examples 5-13
Rules 5-5

*TRG (Trigger) 11-22
TRG

bit 11-19, 11-21
bit in the status byte 4-10
Event Enable Register 4-4

Trigger
(*TRG) 11-22
*TRG status bit 4-4

Trigger Commands 27-2
PATTern THReshold LEVel 27-36,

27-44
TRIG ADV COMM BWID 27-26
TRIG ADV COMM ENCode 27-27
TRIG ADV COMM LEVel 27-28
TRIG ADV COMM PATTern 27-29
TRIG ADV COMM POLarity 27-30
TRIG ADV COMM SOURce 27-31
TRIG ADV EDLY ARM SLOPe 27-48
TRIG ADV EDLY ARM SOURce

27-47
TRIG ADV EDLY EVENt DELay

27-49
TRIG ADV EDLY EVENt SLOPe

27-51
TRIG ADV EDLY EVENt SOURce

27-50
TRIG ADV EDLY TRIG SLOPe 27-53
TRIG ADV EDLY TRIG SOURce

27-52
TRIG ADV PATT CONDition 27-34
TRIG ADV PATT LOGic 27-35
TRIG ADV STATe CLOCk 27-40
TRIG ADV STATe LOGic 27-41
TRIG ADV STATe LTYPe 27-42
TRIG ADV STATe SLOPe 27-43
TRIG ADV STV FIELd 27-63
TRIG ADV STV LINE 27-64
TRIG ADV STV SOURce 27-65

TRIG ADV STV SPOLarity 27-66
TRIG ADV TDLY ARM SLOPe 27-57
TRIG ADV TDLY ARM SOURce

27-56
TRIG ADV TDLY DELay 27-58
TRIG ADV TDLY TRIG SLOPe 27-60
TRIG ADV TDLY TRIG SOURce

27-59
TRIG ADV UDTV ENUMber 27-69
TRIG ADV UDTV PGTHan 27-70
TRIG ADV UDTV POLarity 27-71
TRIG ADV UDTV SOURce 27-72
TRIG ADV VIOL MODE 27-74
TRIG ADV VIOL PWID DIR 27-77
TRIG ADV VIOL PWID POL 27-78
TRIG ADV VIOL PWID WIDT 27-80
TRIG ADV VIOL PWIDth 27-79
TRIG ADV VIOL SET HOLD CSO

27-92
TRIG ADV VIOL SET HOLD CSO

EDGE 27-94
TRIG ADV VIOL SET HOLD CSO

LEV 27-93
TRIG ADV VIOL SET HOLD DSO

27-95
TRIG ADV VIOL SET HOLD DSO

HTHR 27-96
TRIG ADV VIOL SET HOLD DSO

LTHR 27-97
TRIG ADV VIOL SET HOLD TIME

27-98
TRIG ADV VIOL SET MODE 27-84
TRIG ADV VIOL SET SET CSO 27-85
TRIG ADV VIOL SET SET CSO

EDGE 27-87
TRIG ADV VIOL SET SET CSO LEV

27-86
TRIG ADV VIOL SET SET DSO 27-88
TRIG ADV VIOL SET SET DSO

HTHR 27-89
TRIG ADV VIOL SET SET DSO

LTHR 27-90
TRIG ADV VIOL SET SET TIME?

27-91
TRIG ADV VIOL SET SHOL CSO

27-99
TRIG ADV VIOL SET SHOL CSO

EDGE 27-101

Index

Index-16

TRIG ADV VIOL SET SHOL CSO
LEV 27-100

TRIG ADV VIOL SET SHOL DSO
27-102

TRIG ADV VIOL SET SHOL DSO
HTHR 27-103

TRIG ADV VIOL SET SHOL DSO
LTHR 27-104

TRIG ADV VIOL SET SHOL HTIMe
27-106

TRIG ADV VIOL SET SHOL STIMe
27-105

TRIG ADV VIOL TRAN 27-109
TRIG ADV VIOL TRAN SOUR 27-110
TRIG ADV VIOL TRAN SOUR HTHR

27-111
TRIG ADV VIOL TRAN SOUR LTHR

27-112
TRIG ADV VIOL TRAN TYPE 27-113
TRIG EDGE COUPling 27-17
TRIG EDGE SLOPe 27-18
TRIG EDGE SOURce 27-19
TRIG GLITch POLarity 27-22
TRIG GLITch SOURce 27-23
TRIG GLITch WIDTh 27-24
TRIG HOLDoff 27-9
TRIG HTHR 27-10
TRIG HYSTeresis 27-11
TRIG LEVel 27-12
TRIG LTHR 27-13
TRIG SWEep 27-14
TRIGger MODE 27-8

TRIGger EDGE SLOPe 27-15
TRIGger EDGE SOURce 27-15
Trigger Event Register (TRG) 4-10
trigger mode 27-6

ADVanced 27-6
advanced delay 27-45, 27-54
advanced TV 27-61, 27-67
COMM 27-25
delay 27-46, 27-55
EDGE 27-15
GLITch 27-20, 27-21
NTSC TV 27-61
PAL-M TV 27-61
pattern 27-33
state 27-39
User Defined TV 27-67

valid commands 27-7
violation types 27-73

triggering
for User Defined TV mode 27-68

truncating numbers 1-12
Truncation Rule 5-3
*TST (Test) 11-23
TSTArt 19-7
TSTOp 19-9
TVOLt 21-116
TYPE query 28-55

U

UDTV commands 27-67
Unaddressing all listeners 2-10
UNITinterval 21-118
UNITs 10-19, 10-28, 15-14, 15-20

in MTESt AMASk command 20-10
units, vertical 10-19, 10-28, 15-14, 15-20
UNKnown vertical units 10-19, 10-28,

15-14, 15-20
uppercase 1-11

headers 1-11
letters and responses 1-11

URQ bit (User Request) 11-5
User Request (URQ) status bit 4-3
User Request Bit (URQ) 11-5
User-Defined Measurements 21-5
Using the Digitize Command 1-17
USR bit 11-19, 11-21

V

VAMPlitude 21-119
VAVerage 21-120
VBASe 21-122
VDELta? 19-11
version of software, reading 11-9
VERSus 16-33
VERTical 16-34
vertical

axis control 10-2, 15-2
axis offset, and YRANge 29-8
scaling and functions 16-2
scaling, and YRANge 29-9

vertical axis, full-scale 10-26
vertical units 10-19, 10-28, 15-14, 15-20
VIEW 23-31, 26-8, 28-57
VIEW and BLANk 23-8

VIOLation MODE 27-74
violation modes for trigger 27-73
VIOLation PWIDth DIRection 27-77
VIOLation PWIDth POLarity 27-78
VIOLation PWIDth SOURce 27-79
VIOLation PWIDth WIDTh 27-80
VIOLation SETup HOLD CSOurce 27-92
VIOLation SETup HOLD CSOurce

EDGE 27-94
VIOLation SETup HOLD CSOurce

LEVel 27-93
VIOLation SETup HOLD DSOurce 27-95
VIOLation SETup HOLD DSOurce

HTHReshold 27-96
VIOLation SETup HOLD DSOurce

LTHReshold 27-97
VIOLation SETup HOLD TIME 27-98
VIOLation SETup MODE 27-84
VIOLation SETup SETup CSOurce

27-85
VIOLation SETup SETup CSOurce

EDGE 27-87
VIOLation SETup SETup CSOurce

LEVel 27-86
VIOLation SETup SETup DSOurce

27-88
VIOLation SETup SETup DSOurce

HTHReshold 27-89
VIOLation SETup SETup DSOurce

LTHReshold 27-90
VIOLation SETup SETup TIME 27-91
VIOLation SETup SHOLd CSOurce

27-99
VIOLation SETup SHOLd CSOurce

EDGE 27-101
VIOLation SETup SHOLd CSOurce

LEVel 27-100
VIOLation SETup SHOLd DSOurce

27-102
VIOLation SETup SHOLd DSOurce

HTHReshold 27-103
VIOLation SETup SHOLd DSOurce

LTHReshold 27-104
VIOLation SETup SHOLd HoldTIMe

27-106
VIOLation SETup SHOLd SetupTIMe

27-105
VIOLation TRANsition 27-109

Index

Index-17

VIOLation TRANsition SOURce 27-110
VIOLation TRANsition SOURce

HTHReshold 27-111
VIOLation TRANsition SOURce

LTHReshold 27-112
VIOLation TRANsition TYPE 27-113
VLOWer 21-123
VMAX 21-124
VMIDdle 21-125
VMIN 21-126
voltage at center screen 10-6, 10-17
voltage information

of waveform 6-13
VOLTS as vertical units 10-19, 10-28,

15-14, 15-20
VPP 21-127
VRMS 21-128
VSTArt 19-12
VSTOp 19-14
VTIMe 21-130
VTOP 21-131
VUPPer 21-132

W

*WAI (Wait-to-Continue) 11-24
Wait-to-Continue (*WAI) 11-24
WATTS as vertical units 10-19, 10-28,

15-14, 15-20
waveform

data and preamble 28-3
storing 13-15
storing time and voltage 6-13
time and voltage information 6-13
view parameters 28-58

Waveform Commands 28-2
BANDpass? 28-5
BYTeorder 28-6
COMPlete? 28-7
COUNt? 28-8
COUPling? 28-9
FORMat 28-41
POINts? 28-44
TYPE? 28-55
VIEW 28-57
WAVeform SOURce 28-53
XDISplay? 28-59
XINCrement? 28-60
XORigin? 28-61

XRANge? 28-62
XREFerence? 28-63
XUNits? 28-64
YDISplay? 28-65
YINCrement? 28-66
YORigin? 28-67
YRANge? 28-68
YREFerence? 28-69
YUNits? 28-70

Waveform Memory Commands 29-2
DISPlay 29-3
LOAD 29-4
SAVE 29-5
XOFFset 29-6
XRANge 29-7
YOFFset 29-8
YRANge 29-9

waveform type
and COMPlete? 28-7
and COUNt? 28-8
and TYPE? 28-55

WAVeforms?
in MTEST COUNt command 20-20

white space (separator) 1-5
WIDTh

and GLITch 27-24
in TRIGger GLITch 27-24

WINDow
and VIEW 28-57
DELay 26-9
in FUNCtion FFT command 16-13
POSition 26-11
RANGe 26-12
SCALe 26-13

WINDow and VIEW 26-8
WORD

and FORMat 28-42
Understanding the format 28-37

writing
quoted strings 14-14
text to the screen 14-20

X

x axis, controlling 26-2
X vs Y 16-33
X1

in MTESt SCALe command 20-37
X1Position 19-16

X1Position|LLIMit
in HISTogram WINDow command

18-9
X1Y1source 19-18
X2Position 19-17, 19-22
X2Position|RLIMit

in HISTogram WINDow command
18-10

X2Y2source 19-19
x-axis

offset, and XOFFset 29-6
range, and XRANge 29-7
units and XUNits 28-64

x-axis duration
and XRANge? 28-62

XDELta
in MTESt AMASk command 20-11
in MTESt SCALE command 20-38

XDELta? 19-20
XDISplay query 28-59
XINCrement query 28-60
XOFFset 29-6
XORigin query 28-61
XRANge 29-7
XRANge query 28-62
XREFerence? 28-63
XUNits query 28-64

Y

Y1
in MTESt SCALe command 20-40

Y1Position 19-21
in HISTogram WINDow command

18-11
Y2

in MTESt SCALe command 20-41
Y2Position

in HISTogram WINDow command
18-12

Y-axis control 10-2, 15-2
YDELta

in MTESt AMASk command 20-13
YDELta? 19-23
YDISplay? 28-65
YINCrement query 28-66
YOFFset 29-8
YORigin query 28-67
YRANge 29-9

Index

Index-18

YRANge query 28-68
YREFerence query 28-69
YUNits query 28-70

Agilent Technologies Inc.
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

Safety
Notices
This apparatus has been
designed and tested in accor-
dance with IEC Publication 1010,
Safety Requirements for Mea-
suring Apparatus, and has been
supplied in a safe condition.
This is a Safety Class I instru-
ment (provided with terminal for
protective earthing). Before
applying power, verify that the
correct safety precautions are
taken (see the following warn-
ings). In addition, note the
external markings on the instru-
ment that are described under
"Safety Symbols."

Warnings
• Before turning on the instru-
ment, you must connect the pro-
tective earth terminal of the
instrument to the protective con-
ductor of the (mains) power
cord. The mains plug shall only
be inserted in a socket outlet
provided with a protective earth
contact. You must not negate
the protective action by using an
extension cord (power cable)
without a protective conductor
(grounding). Grounding one
conductor of a two-conductor
outlet is not sufficient protec-
tion.

• Only fuses with the required
rated current, voltage, and spec-
ified type (normal blow, time
delay, etc.) should be used. Do
not use repaired fuses or short-
circuited fuseholders. To do so
could cause a shock or fire haz-
ard.

• If you energize this instrument
by an auto transformer (for volt-
age reduction or mains isola-
tion), the common terminal must
be connected to the earth termi-
nal of the power source.

• Whenever it is likely that the
ground protection is impaired,
you must make the instrument
inoperative and secure it against
any unintended operation.

• Service instructions are for
trained service personnel. To
avoid dangerous electric shock,
do not perform any service
unless qualified to do so. Do not
attempt internal service or
adjustment unless another per-
son, capable of rendering first
aid and resuscitation, is present.

• Do not install substitute parts
or perform any unauthorized
modification to the instrument.

• Capacitors inside the instru-
ment may retain a charge even if
the instrument is disconnected
from its source of supply.

• Do not operate the instrument
in the presence of flammable
gasses or fumes. Operation of
any electrical instrument in such
an environment constitutes a
definite safety hazard.

• Do not use the instrument in a
manner not specified by the
manufacturer.

To clean the instrument
If the instrument requires clean-
ing: (1) Remove power from the
instrument. (2) Clean the exter-
nal surfaces of the instrument
with a soft cloth dampened with
a mixture of mild detergent and
water. (3) Make sure that the
instrument is completely dry
before reconnecting it to a
power source.

Safety Symbols

Instruction manual symbol: the
product is marked with this sym-
bol when it is necessary for you
to refer to the instruction man-
ual in order to protect against
damage to the product..

Hazardous voltage symbol.

Earth terminal symbol: Used to
indicate a circuit common con-
nected to grounded chassis.

!

Notices
© Agilent Technologies, Inc.

2005
No part of this manual may be
reproduced in any form or by
any means (including electronic
storage and retrieval or transla-
tion into a foreign language)
without prior agreement and
written consent from Agilent
Technologies, Inc. as governed
by United States and interna-
tional copyright laws.

Manual Part Number
D8064-97001, December 2005

Print History
D8064-97001, December 2005

Agilent Technologies, Inc.
1601 California Street
Palo Alto, CA 94304 USA

Restricted Rights Legend
If software is for use in the per-
formance of a U.S. Government
prime contract or subcontract,
Software is delivered and
licensed as “Commercial com-
puter software” as defined in
DFAR 252.227-7014 (June 1995),
or as a “commercial item” as
defined in FAR 2.101(a) or as
“Restricted computer software”
as defined in FAR 52.227-19
(June 1987) or any equivalent
agency regulation or contract
clause. Use, duplication or dis-
closure of Software is subject to
Agilent Technologies’ standard
commercial license terms, and
non-DOD Departments and
Agencies of the U.S. Govern-
ment will receive no greater
than Restricted Rights as
defined in FAR 52.227-19(c)(1-2)
(June 1987). U.S. Government
users will receive no greater
than Limited Rights as defined in
FAR 52.227-14 (June 1987) or
DFAR 252.227-7015 (b)(2)
(November 1995), as applicable
in any technical data.

Document Warranty
The material contained in
this document is provided
“as is,” and is subject to
being changed, without
notice, in future editions.
Further, to the maximum
extent permitted by applica-
ble law, Agilent disclaims
all warranties, either
express or implied, with
regard to this manual and
any information contained
herein, including but not
limited to the implied war-
ranties of merchantability
and fitness for a particular
purpose. Agilent shall not be
liable for errors or for inci-
dental or consequential
damages in connection with
the furnishing, use, or per-
formance of this document
or of any information con-
tained herein. Should Agi-
lent and the user have a
separate written agreement
with warranty terms cover-
ing the material in this docu-
ment that conflict with these
terms, the warranty terms in
the separate agreement
shall control.

Technology Licenses
The hardware and/or software
described in this document are
furnished under a license and
may be used or copied only in
accordance with the terms of
such license.

WARNING

A WARNING notice
denotes a hazard. It calls
attention to an operating
procedure, practice, or
the like that, if not
correctly performed or
adhered to, could result
in personal injury or
death. Do not proceed
beyond a WARNING
notice until the indicated
conditions are fully
understood and met.

CAUTION

A CAUTION notice
denotes a hazard. It calls
attention to an operating
procedure, practice, or
the like that, if not
correctly performed or
adhered to, could result in
damage to the product or
loss of important data. Do
not proceed beyond a
CAUTION notice until the
indicated conditions are
fully understood and met.

Trademark Acknowledgements
Windows and MS Windows are
U.S. registered trademarks of
Microsoft Corporation.

	Introduction to Programming
	Communicating with the Oscilloscope
	Output Command
	Device Address
	Instructions
	Instruction Header
	White Space (Separator)
	Braces
	Ellipsis
	Square Brackets
	Command and Query Sources
	Program Data
	Header Types
	Duplicate Mnemonics
	Query Headers
	Program Header Options
	Character Program Data
	Numeric Program Data
	Embedded Strings
	Program Message Terminator
	Common Commands within a Subsystem
	Selecting Multiple Subsystems
	Programming Getting Started
	Initialization
	Example Program using HP Basic
	Using the DIGITIZE Command
	Receiving Information from the Oscilloscope
	String Variable Example
	Numeric Variable Example
	Definite-Length Block Response Data
	Multiple Queries
	Oscilloscope Status

	LAN and GPIB Interfaces
	LAN Interface Connector
	GPIB Interface Connector
	Default Startup Conditions
	Interface Capabilities
	GPIB Command and Data Concepts
	Communicating Over the GPIB Interface
	Communicating Over the LAN Interface
	Bus Commands

	Message Communication and System Functions
	Protocols

	Status Reporting
	Status Reporting Data Structures
	Status Byte Register
	Service Request Enable Register
	Message Event Register
	Trigger Event Register
	Standard Event Status Register
	Standard Event Status Enable Register
	Operation Status Register
	Operation Status Enable Register
	Mask Test Event Register
	Mask Test Event Enable Register
	Trigger Armed Event Register
	Acquisition Done Event Register
	Error Queue
	Output Queue
	Message Queue
	Clearing Registers and Queues

	Programming Conventions
	Truncation Rule
	The Command Tree
	Infinity Representation
	Sequential and Overlapped Commands
	Response Generation
	EOI

	Sample Programs
	Sample Program Structure
	Sample C Programs
	Listings of the Sample Programs
	gpibdecl.h Sample Header
	srqagi.c Sample Program
	learnstr.c Sample Program
	sicl_IO.c Sample Program
	natl_IO.c Sample Program
	init.bas Sample Program
	srq.bas Sample Program
	lrn_str.bas Sample Program

	Acquire Commands
	AVERage
	AVERage:COUNt
	COMPlete
	COMPlete:STATe
	INTerpolate
	MODE
	POINts
	POINts:AUTO
	SEGMented:COUNt
	SEGMented:INDex
	SRATe (Sample RATe)
	SRATe:AUTO

	Bus Commands
	BIT<M>
	BITS
	CLEar
	DISPlay
	LABel

	Calibration Commands
	Oscilloscope Calibration
	Probe Calibration
	OUTPut
	SKEW
	STATus?

	Channel Commands
	BWLimit
	DISPlay
	INPut
	OFFSet
	PROBe
	PROBe:ATTenuation
	PROBe:EADapter
	PROBe:ECoupling
	PROBe:EXTernal
	PROBe:EXTernal:GAIN
	PROBe:EXTernal:OFFSet
	PROBe:EXTernal:UNITs
	PROBe:GAIN
	PROBe:ID?
	PROBe:SKEW
	PROBe:STYPe
	RANGe
	SCALe
	UNITs

	Common Commands
	*CLS (Clear Status)
	*ESE (Event Status Enable)
	*ESR? (Event Status Register)
	*IDN? (Identification Number)
	*LRN? (Learn)
	*OPC (Operation Complete)
	*OPT? (Option)
	*PSC (Power-on Status Clear)
	*RCL (Recall)
	*RST (Reset)
	*SAV (Save)
	*SRE (Service Request Enable)
	*STB? (Status Byte)
	*TRG (Trigger)
	*TST? (Test)
	*WAI (Wait)

	Digital Commands
	DISPlay
	LABel
	SIZE
	THReshold

	Disk Commands
	CDIRectory
	DELete
	DIRectory?
	LOAD
	MDIRectory
	MSTore
	PWD?
	SEGMented
	SIMage
	STORe

	Display Commands
	CGRade
	CGRade:LEVels?
	COLumn
	CONNect
	DATA?
	DCOLor
	GRATicule
	LABel
	LINE
	PERSistence
	ROW
	SCOLor
	STRing
	TEXT

	External Trigger Commands
	BWLimit
	INPut
	PROBe
	PROBe:ATTenuation
	PROBe:EADapter
	PROBe:ECoupling
	PROBe:EXTernal
	PROBe:EXTernal:GAIN
	PROBe:EXTernal:UNITs
	PROBe:GAIN
	PROBe:ID?
	PROBe:SKEW
	RANGe
	UNITs

	Function Commands
	FUNCtion<N>?
	ADD
	AVERage
	COMMonmode
	DIFF (Differentiate)
	DISPlay
	DIVide
	FFT:FREQuency
	FFT:RESolution?
	FFT:WINDow
	FFTMagnitude
	FFTPhase
	FFTPhase
	HIGHpass
	HORizontal:POSition
	HORizontal:RANGe
	INTegrate
	INVert
	LOWPass
	MAGNify
	MAXimum
	MAXimum
	MINimum
	MULTiply
	OFFSet
	RANGe
	SMOoth
	SUBTract
	VERSus
	VERTical
	VERTical:OFFSet
	VERTical:RANGe

	Hardcopy Commands
	AREA
	DPRinter
	FACTors
	IMAGe
	PRINters?

	Histogram Commands
	AXIS
	MODE
	SCALe:SIZE
	WINDow:DEFault
	WINDow:SOURce
	WINDow:X1Position | LLIMit
	WINDow:X2Position | RLIMit
	WINDow:Y1Position | BLIMit
	WINDow:Y2Position | TLIMit

	Marker Commands
	CURSor?
	MEASurement:READout
	MODE
	TDELta?
	TSTArt
	TSTOp
	VDELta?
	VSTArt
	VSTOp
	X1Position
	X2Position
	X1Y1source
	X2Y2source
	XDELta?
	Y1Position
	Y2Position
	YDELta?

	Mask Test Commands
	ALIGn
	AlignFIT
	AMASk:CREate
	AMASk:SOURce
	AMASk:[SAVE | STORe]
	AMASk:UNITs
	AMASk:XDELta
	AMASk:YDELta
	AUTO
	AVERage
	AVERage:COUNt
	COUNt:FAILures?
	COUNt:FWAVeforms?
	COUNt:WAVeforms?
	DELete
	ENABle
	FOLDing
	FOLDing:BITS
	HAMPlitude
	IMPedance
	INVert
	LAMPlitude
	LOAD
	NREGions?
	PROBe:IMPedance?
	RUMode
	RUMode:SOFailure
	SCALe:BIND
	SCALe:X1
	SCALe:XDELta
	SCALe:Y1
	SCALe:Y2
	SOURce
	STARt | STOP
	STIMe
	TITLe?
	TRIGger:SOURce

	Measure Commands
	AREA
	CGRade:CROSsing
	CGRade:DCDistortion
	CGRade:EHEight
	CGRade:EWIDth
	CGRade:JITTer
	CGRade:QFACtor
	CLEar
	CLOCk
	CLOCk:METHod
	CLOCk::VERTical
	CLOCk::VERTical:OFFSet
	CLOCk:VERTical:RANGe
	CTCDutycycle
	CTCJitter
	CTCNwidth
	CTCPwidth
	DATarate
	DEFine
	DELTatime
	DUTYcycle
	FALLtime
	FFT:DFRequency
	FFT:DMAGnitude
	FFT:FREQuency
	FFT:MAGNitude
	FFT:PEAK1
	FFT:PEAK2
	FFT:THReshold
	FREQuency
	HISTogram:HITS
	HISTogram:M1S
	HISTogram:M2S
	HISTogram:M3S
	HISTogram:MAX?
	HISTogram:MEAN?
	HISTogram:MEDian?
	HISTogram:MIN?
	HISTogram:PEAK?
	HISTogram:PP?
	HISTogram:STDDev?
	HOLDtime
	JITTer:HISTogram
	JITTer:MEASurement
	JITTer:SPECtrum
	JITTer:SPECtrum:HORizontal
	JITTer:SPECtrum:HORizontal:POSition
	JITTer:SPECtrum:HORizontal:RANGe
	JITTer:SPECtrum:VERTical
	JITTer:SPECtrum:VERTical:OFFSet
	JITTer:SPECtrum:VERTical:RANGe
	JITTer:SPECtrum:WINDow
	JITTer:STATistics
	JITTer:TRENd
	JITTer:TRENd:SMOoth
	JITTer:TREND:SMOoth:POINts
	JITTer:TRENd:VERTical
	JITTer:TRENd:VERTical:OFFSet
	JITTer:TRENd:VERTical:RANGe
	NCJitter
	NWIDth
	OVERshoot
	PERiod
	PHASe
	PREShoot
	PWIDth
	RESults?
	RISetime
	SCRatch
	SENDvalid
	SETuptime
	SLEWrate
	SOURce
	STATistics
	TEDGe
	TIEClock2
	TIEData
	TMAX
	TMIN
	TVOLt
	UNITinterval
	VAMPlitude
	VAVerage
	VBASe
	VLOWer
	VMAX
	VMIDdle
	VMIN
	VPP
	VRMS
	VTIMe
	VTOP
	VUPPer

	Pod Commands
	DISPlay
	THReshold
	PSKew

	Root Level Commands
	ADER? (Acquisition Done Event Register)
	AER? (Arm Event Register)
	ATER? (Auto Trigger Event Register)
	AUToscale
	BLANk
	CDISplay
	DIGitize
	DISable
	ENABle
	MTEE
	MTER?
	MODel?
	OPEE
	OPER?
	OVLEnable
	OVLRegister?
	PRINt
	RECall:SETup
	RUN
	SERial (Serial Number)
	SINGle
	STATus?
	STOP
	STORe:SETup
	STORe:WAVeform
	TER? (Trigger Event Register)
	VIEW

	Self-Test Commands
	CANCel
	SCOPETEST

	System Commands
	DATE
	DEBug
	DSP
	ERRor?
	HEADer
	LOCK
	LONGform
	SETup
	TIME

	Time Base Commands
	POSition
	RANGe
	REFerence
	ROLL:ENABLE
	SCALe
	VIEW
	WINDow:DELay
	WINDow:POSition
	WINDow:RANGe
	WINDow:SCALe

	Trigger Commands
	Trigger Modes
	HOLDoff
	HTHReshold
	HYSTeresis
	LEVel
	LTHReshold
	SWEep
	EDGE:COUPling
	EDGE:SLOPe
	EDGE:SOURce
	GLITch:POLarity
	GLITch:SOURce
	GLITch:WIDTh
	COMM:BWIDth
	COMM:ENCode
	COMM:LEVel
	COMM:PATTern
	COMM:POLarity
	COMM:SOURce
	PATTern:CONDition
	PATTern:LOGic
	:PATTern:THReshold:LEVel
	:PATTern:THReshold:POD<N>
	STATe:CLOCk
	STATe:LOGic
	STATe:LTYPe
	STATe:SLOPe
	:STATe:THReshold:LEVel
	EDLY:ARM:SOURce
	EDLY:ARM:SLOPe
	EDLY:EVENt:DELay
	EDLY:EVENt:SOURce
	EDLY:EVENt:SLOPe
	EDLY:TRIGger:SOURce
	EDLY:TRIGger:SLOPe
	TDLY:ARM:SOURce
	TDLY:ARM:SLOPe
	TDLY:DELay
	TDLY:TRIGger:SOURce
	TDLY:TRIGger:SLOPe
	STV:FIELd
	STV:LINE
	STV:SOURce
	STV:SPOLarity
	UDTV:ENUMber
	UDTV:PGTHan
	UDTV:POLarity
	UDTV:SOURce
	VIOLation:MODE
	VIOLation:PWIDth:DIRection
	VIOLation:PWIDth:POLarity
	VIOLation:PWIDth:SOURce
	VIOLation:PWIDth:WIDTh
	VIOLation:SETup:MODE
	VIOLation:SETup:SETup:CSOurce
	VIOLation:SETup:SETup:CSOurce:LEVel
	VIOLation:SETup:SETup:CSOurce:EDGE
	VIOLation:SETup:SETup:DSOurce
	VIOLation:SETup:SETup:DSOurce:HTHReshold
	VIOLation:SETup:SETup:DSOurce:LTHReshold
	VIOLation:SETup:SETup:TIME
	VIOLation:SETup:HOLD:CSOurce
	VIOLation:SETup:HOLD:CSOurce:LEVel
	VIOLation:SETup:HOLD:CSOurce:EDGE
	VIOLation:SETup:HOLD:DSOurce
	VIOLation:SETup:HOLD:DSOurce:HTHReshold
	VIOLation:SETup:HOLD:DSOurce:LTHReshold
	VIOLation:SETup:HOLD:TIME
	VIOLation:SETup:SHOLd:CSOurce
	VIOLation:SETup:SHOLd:CSOurce:LEVel
	VIOLation:SETup:SHOLd:CSOurce:EDGE
	VIOLation:SETup:SHOLd:DSOurce
	VIOLation:SETup:SHOLd:DSOurce:HTHReshold
	VIOLation:SETup:SHOLd:DSOurce:LTHReshold
	VIOLation:SETup:SHOLd:SetupTIMe (STIMe)
	VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)
	VIOLation:TRANsition
	VIOLation:TRANsition:SOURce
	VIOLation:TRANsition:SOURce:HTHReshold
	VIOLation:TRANsition:SOURce:LTHReshold
	VIOLation:TRANsition:TYPE

	Waveform Commands
	BANDpass?
	BYTeorder
	COMPlete?
	COUNt?
	COUPling?
	DATA?
	DATA? Example for Analog Channels
	DATA? Example for Digital Channels
	FORMat
	POINts?
	PREamble
	SEGMented:COUNt?
	SEGMented:TTAG?
	SOURce
	TYPE?
	VIEW
	XDISplay?
	XINCrement?
	XORigin?
	XRANge?
	XREFerence?
	XUNits?
	YDISplay?
	YINCrement?
	YORigin?
	YRANge?
	YREFerence?
	YUNits?

	Waveform Memory Commands
	DISPlay
	LOAD
	SAVE
	XOFFset
	XRANge
	YOFFset
	YRANge

	Error Messages
	Error Queue
	Error Numbers
	Command Error
	Execution Error
	Device- or Oscilloscope-Specific Error
	Query Error
	List of Error Messages

